z/OS V1R5 Communications Server
Network Management

User's Guide

2003/10/30 15:09:18 V1RS5 Network Mgmt User's Guide.lwp

Preface

This document applies to z/OS ™ Communications Server (5694-A01).

How this document is organized
This document is organized by function:
Chapter 1 - Planning for Network Management
Chapter 2 - Application interfaces for network monitoring
Supported in z/OS CS VIR4, and VIRS
Chapter 3 - Application interface for formatting packet and data trace records
Supported in z/OS CS V1IR4, and VIRS
Chapter 4 - Application interface for monitoring TCP/UDP end points and TCP/IP
storage
Supported in z/OS CS VIR4 and VIRS
Chapter 5 - Application interface for SNA network monitoring data
Supported in z/OS CS VIR4 and VIRS
Chapter 6 - Diagnosis
Appendix A - Record formats
Appendix B - Pre-V1IRS5 PTF information
Appendix C - File storage locations

Who should read this document

This document is intended to be used by programmers who want to use z/OS Communications
Server network management interfaces. Before you use this document, you should have an

understanding of z/OS Communications Server IP and SNA (VTAM) components.

Related information
You may need to refer to these documents as you implement this function:

z/O8S MVS ™ Interactive Problem Control System (IPCS) Customization, SA22-7595

z/OS MVS Programming: Assembler Services Reference, Volume 1 (ABEND-HSPSERYV),
SA22-7609

z/O8 Communications Server: IP Configuration Reference, SC31-8776

z/OS Communications Server: IP System Administrator's Commands, SC31-3881
z/OS Communications Server: IP Diagnosis, SC31-8782
z/0OS Communications Server: SNA Network Implementation, SC31- 8777

z/0OS Security Server RACF Security Administrator's Guide, SA22-7683-04

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

UNIX™ System Services Messages and Codes, SA22-7807
z/0S C/C++ Run-Time Library Reference, SA22-7821

z/OS UNIX System Services Programming: Assembler Callable Services Reference,
SA22-7803-03

Notices

Any reference to an IBM licensed program in this document does not imply that IBM intends to
make them available in all countries in which IBM operates. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that does not
infringe any of the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, New York

USA 10504-1785

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement or other agreement between us.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the

program(s) described in this publication at any time without notice.

Interface information

This document describes the attachment to the following levels of zZOS Communications
Server's Network Management Interfaces:

* 7z/OS VIRS

* 7z/OSVIR4

These interfaces will generally be upward compatible. In other words, applications that are
successfully using these interfaces on a given release should expect that they will be able to
execute on higher releases without any requirement for code changes or recompilation.
However, because of the dependencies on detailed design and implementation, it is to be

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

expected that the interfaces described in this document may need to be changed in order to run
with new product releases or new system platforms or as a result of service.

Unique attachment content

This document indicates only unique actions required when attaching a z/OS Communications
Server image via the interfaces described in this document and does not provide or discuss z/OS
Communications Server on a general level.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

APF

IBM

MVS

RACF

UNIX System Services
z/OS

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 4

Table of Contents

Preface ... 2
Chapter 1 - Planning for Network Management i .. 6
Chapter 2 - Application interfaces for network monitoring 8
Chapter 3 - Application interface for formatting packet and data trace records 26
Chapter 4 - Application interface for monitoring TCP/UDP end points and TCP/IP

] 10 1o 44
Chapter 5 - Application interface for SNA network monitoring data 62
Chapter 6 - DIagnosSiSviu ittt e e 92
Appendix A - Record formats 93
Appendix B - Pre-VIRS PTF information i, 103
Appendix C - File storage locations 105

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 5

Chapter 1 - Planning for Network Management

z/OS Communications Server provides several interfaces that allow network monitor and
management applications to obtain information about its network operations, for both TCP/IP
and VTAM. These interfaces for z/OS Communications Server TCP/IP, provide the following:
* The capability to programmatically obtain copies of TCP/IP packet and data trace
buffers, real-time, as the traces are collected.
* The capability to format the TCP/IP packet trace records collected.
* The capability to obtain:
* Activation and deactivation events for TCP connections in SMF format and
buffered
* Event information for the FTP and TN3270 clients and servers in SMF format
and buffered
* The capability to monitor
* TCP connection and UDP endpoint activity using a callable API
* TCP/IP storage usage using a callable API

The interfaces for z/OS Communications Server VTAM, provide the following:
* The ability to collect Enterprise Extender (EE) summary and connection data
¢ The ability to collect HPR endpoint data
* Communication Storage Manager (CSM) storage statistics

Some of the information provided by these interfaces can be obtained from other types of
documented interfaces provided by z/OS Communications Server such as SNMP, SMF,
command display output, and VTAM exits. TCP/IP packet trace collection and formatting
interfaces provide access to packet trace data that was not previously available through an
authorized, real-time z/OS Communications Server interface. Some of the event information in
SMF format is currently available through traditional SMF services, and can be collected using
an SMF user exit to monitor SMF records.

The interfaces described in this document provide an alternative for collecting some of the
TCP/IP SMF records and are expected to perform efficiently. Most of the data provided by the
application interface for monitoring TCP/UDP end points and TCP/IP storage described in
Chapter 4 can be collected from supported SNMP MIBs. Storage usage information is available
through displays and the VTAM Performance Monitor Interface (PMI). When used properly,
the interfaces documented in this book provide well-defined and efficient APIs to be used for
obtaining management information related to the IP and SNA (VTAM) components of z/OS
Communication’s Server. They also allow for easy application migration to subsequent z/OS
Communication’s Server releases. They are targeted for use by responsible network
management applications.

The following chapters describe the programming interfaces for these functions in detail, and
provide the information required to develop network management applications that use them.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 6

These interfaces:
* Use a client/server model or a called interface.
* Require all clients to be run locally on the same z/OS image as the Communications Server.

* Are provided for C/C++ and Assembler, except as otherwise indicated.

In this document, the term TCP/IP is used to represent the IP component of z/OS
Communications Server and the term VTAM refers to the SNA component of z/OS
Communications Server.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

Chapter 2 - Application interfaces for TCP/IP network

monitoring
The following z/OS Communications Server network management interfaces are described in
this chapter:
Name Description Supported release
SYSTCPDA Network management interface for z/OS V1R4, VIRS
obtaining TCP/IP real-time packet trace
data.
SYSTCPCN Network management interface for z/0S VIR4, VIRS
obtaining TCP connection information
SYSTCPSM Network management interface for z/OS VIR4, VIRS
obtaining real-time SMF data

These interfaces allow network management applications to obtain data in real-time as well as
programmatically. Details for invoking these interfaces and the data provided from them are
documented in the following sections. Programmers will understand how to parse the data
retrieved from these interfaces, and the data structures required to perform this function.
Instructions for compiling and linking applications are also provided.

Overview

Each of the interfaces described in this section provides a unique type of data to be processed by
the end user, but the general interface by which the data is obtained is essentially the same. The
records are retrieved using a common data layout, although the records themselves may differ in

format depending on the interface.

The information provided by each interface is as follows:

Network management
interface for TCP/IP
Real-Time Packet
Tracing (SYSTCPDA)

This interface provides a means for applications to obtain a copy of network packets
(for example, Packet trace records) and/or data trace records that are buffered by the
TCP/IP stack’s packet/data trace functions. The packet trace and/or data trace
function must be enabled with the Vary TCPIP,,PKTTRACE command or Vary
TCPIP,,.DATTRACE command.

Network Management
interface for obtaining
TCP connection
information
(SYSTCPCN)

This interface provides a means for applications to be notified when TCP connections
are established or terminated in a near real-time fashion. SYSTCPCN provides
applications with a copy of records indicating a TCP connection initiation or
termination. These records are presented in the same format as SMF type 119 TCP
connection initiaton and termination records (for example, subtype land 2 records).
The interface also may be used to provide records describing existing TCP
connections. Note that use of this interface does not require TCP/IP SMF recording to
be active.

Network Management
interface for obtaining
real-time SMF data
(SYSTCPSM)

The records provided through the interface are type 119 SMF records. The specific
subtypes that are provided are:
® TN3270 server session initiation and termination records (subtypes 20 and 21).

® TSO telnet client connection initiation and termination records (subtypes 22 and
23).

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp

® FTP server transfer completion records (subtype 70).

® FTP server logon failure records (subtype 72).

® FTP client transfer completion records (subtype 3).

The records above are identical in format to SMF records created by TCP/IP, however

they offer several key advantages:

1. They do not require that TCP/IP SMF record capturing is activated.

2. They are presented to the application in a buffered format (for example, when
several SMF records are created within a short time interval, they are collected
and passed to the application as a group of records instead of individual records.)

In addition to the records above, two more records are available across this interface

that are not currently available from TCP/IP SMF records processing:

® FTP server transfer initiation records (subtype 100).

® FTP client transfer initiation records (subtype 101).

See Appendix A for the structures and mappings of records 100 and 101.

All of these interfaces provide the same two-step process for accessing the data:

1.

The Communications Server TCP/IP stack provides an AF_UNIX streams socket for
each of the above interfaces that allows one or more applications to receive
notifications for the data that is being collected. The TCP/IP stack is acting as the
server for these AF_UNIX streams sockets, performing the listen() and waiting for
incoming connection requests. Applications wishing to exploit this interface connect
to the server’s listening AF_UNIX stream socket. Each of the interfaces has its own,
distinct AF__UNIX pathname that uniquely identifies the socket to be used by the
interface. In the case of SYSTCPDA and SYSTCPSM, once connected, the
application will immediately start receiving applicable data. In the case of
SYSTCPCN, after connecting, the application must send a record to the server to
indicate the type of data it desires, only after which will it start receiving applicable
data.

Each notification record received by the application over the socket represents a
buffer of up to 64K bytes of data being stored by the TCP/IP stack. It is important to
understand that the actual SYSTCPDA, SYSTCPCN and SYSTCPSM data is not part
of this notification record. After receiving the entire notification record from the

AF UNIX socket, the application must then pass this record along with a
user-allocated storage buffer to the EZBTMIC1 API routine provided. EZBTMIC1
will populate the provided storage buffer with the output records related to the
interface that the input notification record defines. Once the notification is received
over the AF UNIX socket, the application must invoke EZBTMICI1 (or
TMI_CopyBuffer) right away since the buffers are stored in a circular queue by the
TCP/IP stack, and may eventually be overwritten and invalidated. The network
management application also needs to execute at a relatively high priority to ensure
that it gets dispatched by the system reasonably quickly so that it can obtain the data
before those buffers are overwritten.

The buffer copied using the EZBTMIC1 API call contains the actual data of interest to the
application. The format of these buffers, and the records contained therein, are described in the
section called “Understanding the common buffer output of TMI_CopyBuffer”.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 9

In summary, the application connects to open an AF_UNIX socket pathname that is defined for
the network management interface for which it would like to collect information (for example,
SYSTCPCN, SYSTCPDA, SYSTCPSN) and receives notification records. It passes these
records to EZBTMICI to copy the actual data of interest into the application's storage. The
application will then parse the records in the returned buffer to obtain the actual packet trace or
SMF-type records. It is possible for the network management application to connect to one or
more of these interfaces from the same application. The application passes these records to an
API call to copy the actual data of interest into the application's storage.

Enabling during configuration

In order for the TCP/IP stack to collect the data for these interfaces and accept connections over
the AF_UNIX socket from clients that want to connect, you must first enable them within the
TCP/IP configuration using the NETMONitor statement in the TCP/IP profile. See the z/OS
Communications Server IP Configuration Reference for details. If you are developing a feature
for a product to be used by other parties, you should include in your documentation instructions
indicating that administrators must make these configuration changes in order to use that feature.

The z/OS system administrator may restrict access to each of these interfaces by defining the
SERVAUTH class EZB.NETMGMT.sysname.tcpprocname.interface profile with UACC of
NONE in RACF (or the equivalent security product), and permitting only certain management
applications or users to access that interface.

Guidelines:

1. The user ID referenced for this authorization check is the user ID associated with the task
and MVS address space that issues the connect() call for the AF_ UNIX stream socket.

2. “sysname” represents the MVS system name where the interface is being invoked.

3. “tcpprocname” represents the job name associated with a TCP/IP started task procedure.
4. “interface” represents SYSTCPDA, SYSTCPCN, or SYSTCPSM.

For more information refer to z/OS Communications Server: IP Configuration Reference.

If the RACF profile is not defined for the interface, then only superusers (users with an OMVS
UID of 0 or users permitted to access the BPX.SUPERUSER resource in the FACILITY class)
are permitted to use the interface. If you are developing a feature for a product to be used by
other parties, include in your documentation instructions indicating that administrators must
either define and give appropriate permission to the given security resource for use of that
feature, or must run your program as superuser.

Connecting to the server

The application wishing to make use of one of the interfaces must connect to the appropriate
AF UNIX streams socket provided by TCP/IP, which acts as the server. The socket pathnames
for each of these interfaces are as follows. For each of the following, tcpipprocname is the
procedure name used to start TCP/IP.

* Network monitor interface for capturing data packets (SYSTCPDA)

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 10

/var/sock/SYSTCPDA. tcpipprocname

* Network monitor interface for obtaining TCP connection information (SYSTCPCN)

/var/sock/SYSTCPCN. tcpipprocname

* Network monitor interface for obtaining real-time SMF data (SYSTCPSM)
/var/sock/SYSTCPSM. tcpipprocname

Use either the LE C/C++ API or the UNIX System Services BPX callable services to open
AF UNIX sockets and connect to the given service.

Interacting with the servers

In the case of the TCP connection information service, after connecting to the SYSTCPCN
server over AF_UNIX socket, /var/sock/SYSTCPN.tcpipprocname, the application must then send
a connection request record to the server over the connected socket (see the tmi_conn_request
record). For the other two services, the application need take no action.

After the client connects to the desired server (or, in the case of the SYSTCPCN service, after
sending a connection request record), the server will send an initial record to the client,
identifying the server (see the tmi_init record). After that record is received, the client will be
sent tmi_token records representing data buffers. A record will be sent for each data buffer filled
in by TCP/IP. Records for partial buffers are sent if there has been no activity for a brief period.
In case there is no activity, the client should be prepared to wait for extended periods of time for
incoming tokens.

When the server needs to terminate the connection, it will attempt to send a special termination
record (see the tmi_term record) over the socket to the connected application, after which it will
close the socket. This termination record describes the reason for closure. In some cases, the
server may be unable to send such a record, and will close the socket. The application should be
prepared to handle either case.

Particularly for the SYSTCPDA and SYSTCPCN interfaces, large amounts of data can be
generated. Care should be taken in the case of SYSTCPDA not to activate too broad of a packet
trace filter option, so as to avoid recording unnecessary data; see the z/OS Communications
Server IP Configuration Reference and z/OS Communications Server IP System Administrator’s
Commands for details. In the case of SYSTCPCN, the NETMONitor MINLIFETIME TCP/IP
profile configuration option may be used to restrict the collection of short-lived connections; see
the z/OS Communications Server IP Configuration Reference for details.

Restriction: Except in the case of sending a connection request record for the SYSTCPCN
service, the client application must never send data to the server. If data is unexpectedly
received by the server, the server will send a termination record with tmit_termcode = EPIPE to
the client, and will close the connection.

Common record header

All data sent over the AF_UNIX socket by the client and the server is prefixed with a common
header indicating the length of the entire record (this length includes the header) and the type of
data contained within the record. The format for the header is as follows, as defined in
ezbytmih.h (an assembler mapping for this structure is in EZBYTMIA):

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 11

struct tmi header

{

int TmiHr len; /* Length of this record */

int TmiHr Id; /* Identifier for this record */

int TmiHr Ver; /* Version identifier for this */

int TmiHr resv; /* reserved */

}i

#define TmiHr CnRgst 0xC3D5D9DS8 /* Constant ("CNRQ") */
/* TCP connection request record */

#define TmiHr Init 0xCO9D5COE3 /* Constant ("INIT") */
/* Connection initialization */

#define TmiHr Term 0xE3C5D9D4 /* Constant ("TERM") */
/* Normal connection termination */

#define TmiHr SmfTok OxE2D4E3D2 /* Constant ("SMTK") */
/* Token for SMF buffer */

#define TmiHr PktTok OxE2D7D3E2 /* Constant ("TPKT") */
/* Token for packettrc data */

#define TmiHr Versionl 1 /* Version number */

Requests sent by the client to the server

For the SYSTCPCN service only, the client must send a request record to the server after
connecting to the server's AF_UNIX socket. This request record is in the following format,
defined in ezbytmih.h (an assembler mapping for this structure is in EZBYTMIA):

struct tmi conn request /* Conn info server request */
{
struct tmi header tmicnrqg hdr; /* Header; id=TMI ID CNRQST */
unsigned int tmicnrqg list :1; /* Requests connection list */
unsigned int tmicnrg smf i /* Requests init/term SMFrcd*/
unsigned int tmicnrg rsvdl :30; /* Reserved, set to O */
char tmicnrg rsvd2([12]; /* Reserved, set to O */

}i
The client should initialize the fields of this request structure as follows:

* Initialize the tmicnrq_hdr using the length of tmi_conn_request, the appropriate
record ID (TMIHr_ CnRgst), and the correct version (TMIHr Versionl).

* Initialize the tmicnrq list and tmicnrg smf fields as described below.

* Initialize all remaining fields to zero.

The two fields tmicnrq_list and tmicnrq _smf control the data that the SYSTCPCN server will
send to the client. These fields should be set as follows:
* tmicnrq list

If set, the server will send the client zero or more tokens representing data buffers that
contain a list of all established TCP connections at the time the client connected. These
connections will be represented as type 119 TCP connection initiation SMF records. If
this field is set to 0, no such list will be sent to the client.

* tmicnrq_smf

If set, the server will send tokens to the client These tokens represent data buffers that
contain type 119 TCP connection initiation and termination SMF records, representing
TCP connections that are established and closed on the TCP/IP stack. If this field is set

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

to 0, the server will not send any tokens representing ongoing connection establishment
and closure.

The SYSTCPCN server will wait until it has received this entire record from the client before it
starts processing connection information on the client's behalf. If the client does not send a
complete record, then the server will never report data to the client, since the client has not
completed initialization. If the server receives a record with an unrecognized version, a bad
length, or a bad eyecatcher, then it will send a termination record (see following) with
tmit_termcode = EINVAL to the client, and will close the connection.

Records sent by the server to the client

For each of the three interfaces, the server sends three types of records to the client:
1. Initialization records

2. Termination records

3. Token records

Each record is described in the sections that follow.

Initialization record

After the client connects to the server, the server sends an initialization record to the client. The
initialization record may be recognized as having a TmiHr Id equal TmiHr CnRgst. This record
contains miscellaneous information about the server and the stack that the client may choose to
use or ignore. This record has the following format, defined in ezbytmih.h (an assembler
mapping for this structure is in EZBYTMIA):

struct tmi init /* Connection startup record */

{
struct tmi header tmii hdr; /* Record header */
char tmii sysn[8]; /* System name (EBCDIC) */
char tmii comp[8]; /* Component name (EBCDIC) */
char tmii sub[8]; /* TCPIP job name (EBCDIC) *x/
char tmii time[8]; /* Time TCPIP started (STCK) */
char tmii rsvd[16]; /* Reserved */

}i
The component name, tmii_comp, represents the server the client is connected to. This will be
one of SYSTCPDA, SYSTCPCN, or SYSTCPSM, depending on the server being accessed.

Termination record

The termination record is sent when the server closes the connection. The termination record
may be recognized as having a TmiHr Id equal to TmiHr Term. The connection may be closed
as part of normal operation (for example the service is being disabled or the stack is
terminating), or it may be closed due to some error. A termination code in the record indicates
the termination reason.

This record is the last data sent by the server before close; after sending the termination record,
the server will close the connection. The stack will attempt to send the termination record before

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 13

it closes the socket. However, under certain abnormal stack termination conditions, it may be
unsuccessful; furthermore, if the client's receive buffer is full, it may also be unsuccessful. In
such cases the connection is closed.

The format of this record is as follows, as defined in ezbytmih.h (an assembler mapping for this
structure is in EZBYTMIA):

struct tmi term /* Termination notification rcd */
{
struct tmi header tmit hdr; /* Record header */
unsigned int tmit termcode; /* Termination code */
char tmit tstamp[8]; /* Termination timestamp */
char tmit rsvd[12]; /* Reserved */

b

The possible values for tmit termcode and their explanations are as follows, as defined in
errno.h:

Value Description

0 No error; planned termination. Either this function is being disabled or the
TCP/IP stack is ending.

EACCES (111) The client is not permitted to connect to the server.
EINVAL (121) The client has sent invalid data to the server.
ENOMEM (132)

The server was unable to allocate necessary storage.

EPIPE (140) The client has erroneously sent data to the server when the server was not
expecting data.

EWOULDBLOCK (1102) The server could not write to the client socket because the client's receive
buffer is full (in which case it is possible that the server may not have been
able to write this record and closed the connection).

See the z/OS UNIX System Services Messages and Codes for more detail.

The tmit tstamp field contains an 8-byte MVS TOD clock value for the time of termination of
the connection.

The client should expect to receive no more data on the connection following this record; the
connection will be closed by the server.

Token record

The server sends the tmi_token record when a 64k buffer has been filled with records for the
given service. The token record may be recognized as having a TmiHr Id equal to

TmiHr PktTok (in the case of SYSTCPDA) or TmiHr SmfTok (in the case of SYSTCPCN and
SYSTCPSM). In addition, each of the servers will, after a brief period of inactivity, flush a
partially filled buffer, sending a token for that partial buffer and advancing to the next internal
buffer.

The format of this record is as follows, as defined in ezbytmih.h (an assembler mapping for this
structure is in EZBYTMIA):

struct tmi token

{
struct tmi header tmik hdr; /* Record header */
char tmik token[32]; /* Token representing buffer */

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 14

}s

The tmik_token record contains a token describing the data buffer. The client's actions upon
receiving this record are discussed in the following section.

Copying the trace buffer

Use the EZBTMICI service to copy the data buffer to the client application's storage.
EZBTMICI may be invoked through a C function, TMI_CopyBuffer, which calls the callable
service. EZBTMICI uses the tmi_token record just read from the AF_UNIX socket as input to
locate and copy the data buffer to the user-provided 64K byte buffer.

EZBTMIC1 - Copy TCP/IP Management Interface Data Buffer
Function

The EZBTMICI callable service uses a token provided over a TCP/IP management
interface to copy a data buffer into application storage. This service is also referred to as
the TMI copy buffer service.

Requirements
Authorization Supervisor state or problem state, any PSW key

Caller must be APF authorized

Dispatchable unit mode Task
Cross memory mode PASN = HASN

AMODE 31-bit
ASC mode Primary mode
Interrupt status Enabled for interrupts
Locks Unlocked
Control parameters All parameters must be addressable by the caller and in the primary address
space.
Format

CALL EZBTMIC1, (Token,
Bufptr,
Return value,
Return code,
Reason code)

Parameters
Token
The name of a record containing a token describing a TCP/IP management interface data buffer.
Type Structure
Length Size of buffer token record
Bufptr
The address of a buffer into which the TCP/IP management data buffer will be copied.

Type Structure

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 15

Length 12

The bufptr parameter is a 12-byte structure describing the address of the buffer:
Bufptr DS 0F /* Buffer pointer */
Buf alet DC F’' 0’ /* Buffer ALET, or 0 */
Buf addr hi DC Fr0’ /* Highword of 64bit bufptr */
Buf addr DC A(0) /* Lowword of 64bit bufptr */

If the buffer is in a data space, then Buf" alet is the ALET of the data space, otherwise it is
zero. If the buffer is in 64-bit storage, then Buf addr hi and Buf addr contain the 64-bit
address of the buffer. If the buffer is in 24 or 31-bit storage, then Buf addr hi contains zeros
and the buffer address in Buf addr. To improve performance, place the buffer on a page

boundary.

This buffer can represent the following:

* When the token is a TmiHr PktTok, the data buffer will contain the
unformatted packet trace data records (SYSTCPDA).

* When the token is a TmiHr SmfTok, the data buffer will contain SMF records
(SYSTCPCN or SYSTCPSM).

Return_value

Returned parameter

Type
Length

Integer

Fullword

The name of a fullword in which the TMI buffer copy service returns the results of
the request:

Return_code

> (-- the data buffer has been successfully copied into the application
buffer. The return value is the number of bytes of data that has been
copied into the buffer. This length does not include the trailing halfword
of zeros in the buffer.

-1 -- the system could not complete the request, for reasons such as the
data buffer being no longer valid. Refer to Return_code and Reason code
for more details.

Returned parameter

Type
Length

Integer

Fullword

The name of a fullword in which the TMI buffer copy service stores the return code.
The TMI buffer copy service returns Return_code only if Return_value is -1. The
TMI buffer copy service can return one of the following values in the Return _code

parameter:

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp 16

Return value Return_code Meaning

>0 0 The request was succesful.

-1 EACCES The application is not APF authorized.

-1 EBADF The token provided to locate a buffer is not a valid token.

-1 EFAULT The address is incorrect.

-1 EINVAL The token provided to locate a buffer does not specify a
valid data buffer.

-1 EILSEQ The data buffer described by token has been overwritten
and is no longer available.

Reason_code
The name of a full word in which the TMI buffer copy service stores the reason code.
Type Integer
Length Fullword

The TMI buffer copy service returns Reason code only if Return value is -1. The reason
code contains diagnostic information and is described in z/OS UNIX System Services
Messages and Codes.

Usage Notes
Compiling and Linking

Assembler mappings for the various records that flow over the AF_UNIX socket may be
found in macro EZBYTMIA.

This routine will be in SYS1.CSSLIB as the callable stub EZBTMICI.

TMI_CopyBuffer - Copy TCP/IP Management Interface Data Buffer

The TMI_CopyBuffer() function copies the 64K byte TMI data buffer described in token to the
application-provided buffer pointed to by bufptr. Ezbytmih.h contains this definition.

Format

void Tnmi _CopyBuffer (struct tni_header *token,
struct bufptr_t *bufptr,
int *retval,
int *retcode,
int *rsncode);

2003/10/30 15:09:18 V1RS5 Network Mgmt User's Guide.lwp 17

Parameters

token

The pointer to the token record read from the TCP/IP management interface service. The
record contains a token used to locate a data buffer to be copied.

bufptr

A pointer to a tmi_bufptr structure describing a 64K byte buffer provided by the user.
The indicated buffer will be overwritten with the contents of the TMI data buffer if the

call is successful.

The tmi_bufptr structure is a twelve-byte structure describing the address of the buffer.

struct tmi bufptr /* Buffer pointer */
{
int buf alet; /* Buffer ALET, or O */
int buf addr hi; /* Highword of 64bit bufptr */
void *buf addr; /* Lowword of 64bit bufptr */

}s

retval

The returned value.

If successful, TMI_CopyBuffer() returns the number of bytes copied in retval.

If unsuccessful, TMI_CopyBuffer() returns -1 in retval and sets retcode to one of the
following values:

retcode

A pointer to a full word in which the TMI buffer copy service stores the return code.

The TMI buffer copy service returns retcode only if retval is -1. The TMI buffer copy service
can return one of the following values in the refcode parameter.

Error code description

Return_code Meaning

EACCES The application is not APF authorized.

EBADF The Token provided to locate a buffer is not a valid token.

EFAULT Using the Buffer parameter as specified would result in an attempt to access storage outside

the caller's address space.

EINVAL The Token provided to locate a buffer does not specify a valid data buffer.

EILSEQ The data buffer described by Token has been overwritten and no longer available.
rsncode

The address of a full word in which the TMI buffer copy service stores the reason code.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 18

The TMI buffer copy service returns rsncode only if retval is -1. The reason code contains
diagnostic information and is described in z/OS UNIX System Services Messages and Codes.

Usage Notes
Character data

Some of the data contained in the TMI data buffer may be system data, such as job
names. Such data will be in EBCDIC and the application should be prepared to process
it appropriately.

Compiling and linking

The callable service routine that provides this service is provided as a callable stub
located in SYS1.CSSLIB.

Understanding the common buffer output of TMI copy buffer service

Upon successful completion of the EZBTMICI call of the TMI_CopyBuffer(), the user-supplied
64-k buffer is filled with cfe records, which contain the data provided by the service being used.

The data records for the server are stored sequentially within individual 64K data buffers. The
cte describes the length of the data record. The data record is immediately followed by a cteeplg
(cte epilogue) structure. The first ce structure begins at the beginning of the buffer. The last
cteeplg is followed by a cte whose ctelenp field is 0; this signifies the end of the data in the
buffer. The layout of the buffer is as follows:

I cte | data | cteiepilogue | cte| data | cteiepilogue | | ctel data | cteiepilogue | binaryOI

The cte is a 16-byte descriptor whose format is as follows (as defined in ezbytmih.h, and in
ITTCTE in SYS1.MACLIB):

struct cte

{

unsigned short ctelenp; /* Length of CTE
and cte_epilogue. */
short cteoff; /* Offset from start of CTE */
unsigned long ctefmtid; /* Format ID of record */
unsigned long long ctetime; /* STCK timestamp of record
creation */

b

ctelenp holds the total length of the record, including the cte, the data record, and the
cte_epilogue. cteoff is the offset to the data record from the start of the cfe. The ctefmtid is a
format ID specific to each service; it is described in a following section. The ctetime is an 8-byte
STCK timestamp of the time the record was written.

The format of the two-byte cteeplg is as follows (as defined in ezbytmih.h, and in ITTCTE in
SYS1.MACLIB):

struct cteeplg

{
unsigned short ctelene; /* Length of CTE, data, and
cte epilogue. */

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 19

The field ctelene holds the same value as the ctelenp field in the cte.

Format of service-specific data

The sections below describe how to process CTE records for SYSTCPDA, SYSTCPCN, and
SYSTCPSM.

Processing the CTE records for SYSTCPDA

The following ctefmtid values are supported for the SYSTCPDA interface:

ctefmtid Data Area Description Command to Start

1 (TRCIDPKT) Described by the GtCntl | IPv4 packet trace record | VARY TCPIP,,PKTTRACE
structure

2 (TRCIDX25) Described by the GtCntl | IPv4 packet trace record | n/a
structure

3 (TRCIDDAT) | Described by the GtCntl | [Pv4 data trace record VARY TCPIP,,DATTRACE

structure

4 (PTHIdPkt) Described by the IPv4 or IPV6 packet VARY TCPIP,,PKTTRACE
PTHDR T structure trace record

5 (PTHIdDat) Described by the IPv4 or IPV6 data trace | VARY TCPIP,,DATTRACE

PTHDR T structure record

If tracing for the TCP/IP data trace and the TCP/IP packet trace is active, the trace buffer will
contain both types of records. The client must handle this condition.

The GtCntl is defined in EZBCTHDR and contains the following information:

GTCNTL

gt segnum One byte sequence nunber

gtsflg Fl ag byte
GISPKT 0x80 Packet trace request
GISX25 0x40 X. 25 Data trace request
GITSDAT 0x20 Data trace request
GTSVERS 0x10 Version nunber always 1
GTSI UTL 0x08 Data frommultiple PDUs
GTISADJ 0x04 Record size adjust by +1
GTSABBR 0x02 | P pkt was abbrevi at ed
GIrsPOUT 0x01 |IP pkt was sent = 1 rcvd =0

gtslrcd Lost record count

gt srect Record type (device type)
GISLCSE 1 | FPETH - Et her net
GTSLCS8 2 | FP8023 - 802. 3 Et hernet
GTSLCSES8 3 | FPETHOR - Et her| 802. 3
GISLCSTR 4 | FPTR - Token Ri ng
GISLCSFD 5 | FPFDDI - FDDI
GTSLUB2 6 | FPSNA62 - SNA LU6. 2
GI'SHCH 10 | FPHCH - Hyper Channel

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

GI'SCLVRS 21 | FPCLI P - CLAW

GISCTC 29 | FPCTC - CTC
GISCDLC 30 IFPCDIP - CDLC IP
GISATM 32 | FPATM - ATM

GISVI PA 33 | FPVI PA - VI PA
GI'SLOOPB 34 | FPLOOPB - LoopBack
GI'SMpc 35 | FPMPC - MPC
GIrsSx2sc 36 | FPX25 - X 25

GI'SSNALN 37
GI'SMPCI E 39
GI'SMPCOD 40
GI'SMPCON 41

| FPSNALI NK - SNA LI NK

| FPI PAENET - MPC | P AQENET I i nk
| FPCSAFDDI - MPC OSAFDDI i nk

| FPOSAENET - MPC OSAFNET I nk

GISWPCI H 42
GIrsqQ bl O 43

| FPI PAQTR - MPC | PAQTR | i nk
| FPI PAQ DO - i Qdi 0

gtstlen Total length of |IP packet

gt sl knm Li nk nane, or data trace job name

gt ssi pad Source | Pv4 address

gt sdpad Destination | Pv4 address

gtstod Tinme of Day tinmestanp

gt ssport Source port nunber (data trace)

& sdport Destinati on port number (data trace)
G stch MWS TCB address (data trace)

G sasid ASID (data trace)

The PTHDR T is defined in EZBYPTHA and contains the following information:

PTHDR_T
pth_|en Length of the PTHDR T structure
pth_segnum Sequence nunber of this packet
pth_flag Flag indicators
PTH_Adj 0x04 Record size was adjusted by +1 (reflected

in the ctelene and ctelenp). The

data |l ength was odd and a single pad byte was added.

PTH_Abbr 0x02 ABBREV par aneter was used on the trace
command

PTH _Qut 0x01 | P packet was sent lrcvd =0

pt h_devty The type of device represented by the interface being traced.

PTHLCSE 1 - Et her net

PTHLCS8 2 - 802. 3 Ethernet

PTHLCSES 3 - Ether|802.3

PTHLCSTR 4 - Token Ring

PTHLCSFD 5 - FDDI

PTHLUG2 6 - SNA LUS6. 2

PTHHCH 10 - Hyper Channel

PTHCLWRS 21 - CLAW

PTHCTC 29 - CIC

PTHCDLC 30 - CDLC IP

PTHATM 32 - ATM

PTHVI PA 33 - VI RTUAL

PTHLOOPB 34 - LoopBack

PTHMpc 35 - MPC

PTHX25C 36 - X 25

PTHSNALN 37 - SNA LINK

PTHWCI G 38 - MPC giga

PTHWCIE 39 - MPC | PAQGENET

PTHVMPCCD 40 - MPC CSAFDDI

PTHVPCON 41 - MPC OSAFNET

PTHWCIH 42 - MPC | PAQIR

PTHQ DIO 43 - iQdio

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 21

PTH6I oopb 51 - I Pv6 | oopback

I
PTH6vi pa 52 i fpbvi pa
PTH6i pagenet 53 i f p6i pagenet
PTH6i paqtr 54 i fp6i paqtr
PTH6mMC 55 i f pénpc
PTH6i paqi dio 56 i f p6i paqi di o
pth_tlen Portion of the payload that is actually traced. |If ABBREV was not

specified on the trace conmand then this will be the name as pth_plen.
I f ABBREV was specified, then it will be this val ue.

pth_infname Nane of the interface the packet was traced on in EBCDI C
character fornat

pth_tinme Stored tine of day clock when packet was processed by the trace
pth _src Hexadeci mal source | P address of this packet (I1Pv6 or | Pv4)
pt h_dst Hexadeci mal destination | P address of this packet (I1Pv6 or |Pv4)
pt h_sport Hexadeci mal source | P port number
pt h_dport Hexadeci nal destination |IP port
pth_trcnt Total count of records traced
pth_tcb Task control bl ock address of the sender of the outbound. On
i nbound, this will usually be task associated with the TCP/IP stack
pth_asid Ascbasi d of the sender of the outbound packet. On inbound, this
will usually be the asid of the TCP/IP stack
pt h_| ost Total |ost record count
pth_pl en Payl oad | ength

The fields in the GtCntl and PTHDR T with the same suffix serve the same purpose in both
headers. IPv4 address in pth_src and pth_dst are prefixed with x’000000000000°,
x’00000000FFFE’ or x’00000000FFFF".

Processing trace records in a buffer

The EZBTMICI call or the TMI_CopyBuffer() service is used to receive a buffer of trace
records defined by a starting CTE structure and ending with a two byte ctelente field, which has
the same value as the ctelenp. The PTHDR T structure follows the CTE and has many fields for
use when processing the trace records. The pth tlen field is the IP packet payload length,
although this field could reflect the ABBREV parameter on the PKTTRACE command.

In some cases, to obtain the entire IP packet, multiple trace records must be processed. These
trace records could span multiple 64K buffers and will probably not be contiguous. In this case,
several fields must be examined. See the example of IP record X below. The ctelenp will be
less than the pth_tlen. The pth segnum fields must be used to determine the ordered chain of
records that make up the IP packet. The first record in the sequence will have pth seqnum=0 and
will contain the IP protocol headers. The pth_tlen and pth_time will be the same for each record
in the sequence.

Example of split buffers for IP packet X:

First TMI CopyBuffer() issued:

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 22

64K buffer received

Trace Records

Recordl for IP packet X | PTHDR_T trace data ctelente=1K
CTE structure structure (IP packet X)
ctelenp=1K pth_seqnum=0 contains IP headers

pth_tlen=64K
pth time=Time X

Second TMI_CopyBuffer issued:
64K buffer received

Trace Records

Recordl for IP packet Y | PTHDR_T trace data ctelente=1K
CTE structure structure (IP packet Y)
ctelenp=1K pth_seqnum=0 contains IP headers
pth_tlen=ip
payload length
(less than 1K)
Record2 for IP packet X | PTHDR T trace data ctelente=32K
CTE structure structure (IP packet X
ctelenp=32K pth_seqnum=1 continued).
pth_tlen=64K No headers.

pth_time=Time X

Trace Records

Third TMI_CopyBuffer() issued:
64K buffer received

Trace Records

Record3 for IP packet X | PTHDR_T trace data
CTE structure structure (IP packet X ctelente=31K
ctelenp=31K pth_seqnum=2 continued).

pth_tlen=64K No headers.

pth-time:Time X

Processing the CTE records for SYSTCPCN

The TCP connection information server (SYSTCPCN) presents information about the
establishment and closing of TCP connections as they occur. Type 119 SMF TCP connection
initiation and termination records (subtypes 1 and 2) are stored in the data buffer to reflect this

2003/10/30 15:09:18 V1RS Network Mgmt User's Guide.lwp 23

activity. Each record in the data buffer will be a complete type 119 SMF record, of subtype 1 or
2.

Additionally, if requested, the server will fill one or more buffers with the list of currently active
connections. This list is provided as type 119 TCP connection initiation records (subtype 1), so
that entries in the list will be indistinguishable from newly established connections (except that
the connection establishment timestamp will be in the past). This set of records is sent only once
per new connection, after the initialization.

For the TCP connection information server, the ctefmtid for the CTE will always be equal to the
subtype of the SMF record (either 1 or 2) following the CTE in the data buffer.

Applications may use this interface to dynamically maintain a list of active TCP connections.
Note that due to timing issues, it is possible that an application will receive two initiation records
for a given connection (if the connection is established around the time the client connects, its
initiation record will be sent, as will a record identifying it as a pre-existing established
connection). It is also possible that an application will receive a termination record for a
connection for which it has not received an initiation record. Client applications should be
prepared to handle both of these possibilities.

SMF recording for TCP connection initiation and termination records does not need to be active
for this service to function. Moreover, activating this service does not cause TCP connection
initiation and termination SMF records to be recorded into the SMF data sets if they are not
already enabled.

C structures for mapping the SMF type 119 records may be found in ezasmf.h. Assembler
mappings for the structures may be found in EZASMF77 in SYS1.MACLIB.

Processing the CTE records for SYSTCPSM

The real-time SMF data server (SYSTCPSM) reports type 119 SMF event records for TCP/IP
applications. Each record in the data buffer is a complete type 119 SMF record. The records
reported, and their subtypes, are as follows:

* FTP client transfer initialization (subtype 101).

* FTP client transfer completion (subtype 3).

* FTP server transfer initialization (subtype 100).

* FTP server transfer completion (subtype 70).

e FTP server logon failure (subtype 72).

e TN3270 server session initialization (subtype 20).

* TN3270 server session termination (subtype 21).

* TSO telnet client connection initialization (subtype 22).
* TSO telnet client connection termination (subtype 23).

For the real-time SMF data server, the ctefmtid for the CTE will always be equal to the subtype
of the SMF record (one of the values listed above) following the CTE in the data buffer. The
structures and macros for mapping the SMF 119 record subtypes delivered by these interfaces
are as follows:

| Subtype | C/C++ header IAssembler macro |

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 24

3,20,21,22,23,70 and 72

hlg. SEZANMAC(EZASMF)

SYS1.MACLIB(EZASMF77)

100 and 101

hlq.SEZANMAC(EZANMFTC)

hiq.SEZANMAC(EZANMFTA)

Refer to Appendix A for the layout of
the FTP Client and Server Transfer
Initialization records.

* hlg represents the z/OS Communications Server data set high level qualifier.

The FTP client/server transfer initiation records are available only across this interface.

See z/0S Communications Server: IP Configuration Reference Appendix D for the formats of

SMF type 119 records.

The header files and macros are described in the following table:

Header files for
C/C++ programs

Macros for Contents

Assembler programs

records, subtype 100 and 101. See
Appendix A.

EZBYTMIH EZBYTMIA Request and response headers containing
the common headers, connection requests,
initialization, termination and token
records.

EZANMFTC EZANMFTA Structures and mappings for the SMF 119

These header files and macros are shipped in the hlg.SEZANMAC data set (hlq refers to the high
level qualifier used when the product was installed on your system). This data set must be
available in the concatenation when compiling or assembling a part that makes use of these

definitions.

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp

25

Chapter 3 - Application interface for formatting packet and
data trace records
Records collected from the SYSTCPDA interface described in the previous chapter may be

formatted programmatically with the EZBCTAPI macro. This chapter describes how the
EZBCTAPI interface may be used.

Name Description Supported release
EZBCTAPI Network management interface for Z/0OS V1R4, VIRS
formatting packet trace records

Overview

The interface to the formatter described in this chapter provides a means for network
applications to format packet and data trace records. An application program can capture a copy
of the packet and data trace buffers using the Network Management interface for TCP/IP
real-time packet and data tracing (SYSTCPDA), described in Chapter 2.

Trace records are laid out in the trace buffer as a series of Component Trace Entries (CTEs).
Each CTE contains one trace record. The format identification field (CteFmtId) describes the
layout of data in the trace record. Types 1, 2 and 3 contain a header (GTCNTL) described the
EZBCTHDR macro (or the EZBYCTHH header). Types 4 and 5 contain a header (PTHDR _T)
described by the EZBYPTHA macro (or the EZBYPTHH header). The table below depicts the
layout of the various records.

CteFmtld Description Header |IP Header| Protocol Data V1R4 VIRS
1 Packet Trace GTCNTL 1Pv4 variable variable Y N
2 X25 Trace GTCNTL 1Pv4 variable variable N N
3 Data Trace GTCNTL N/A N/A variable Y Y
(EE only)* (EE only)*
4 Packet Trace PTHDR T 1Pv4 variable variable n/a Y
4 Packet Trace PTHDR T IPv6 variable variable Y Y
5 Data Trace PTHDR T N/A N/A variable Y Y

* EE stands for Enterprise Extender. Read about Enterprise Extender in z/OS Communications
Server: SNA Network Implementation.

The ABBREYV value of the PKTTRACE or DATTRACE command determines the amount of
data available. The layout of CTEs in the 64K buffer is below.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 26

CTE Fmtld=1 GtCntl | IPv4 header | protocol header data CTEEPL(*

CTE Fmtld=4 | PTHDR_t | IPv6 header | protocol header data CTEEPL#

CTE Fmtld=4 | PTHDR t | IPv4 header | protocol header data CTEEPL%

CTEFmtid=5 | PTHDR_t | =-cooemeoan-n data - ------=-c--- CTEEPL%

A P P

CTE Fmtld=3 | GtCntl | -----cocnaonnn data-----=-c-cn-- CTEEPL%

X0000°

¥

Configuration and enablement
There is no formal configuration required to enable this interface.

EZBCTAPI Network management interface for formatting packet trace records

Function

The EZBCTAPI macro accepts parameters to format component trace records from the TCP/IP
packet trace and data trace. The data is formatted in the same fashion as is done using the IBM
provided packet trace and data trace formatters that are available with the IPCS CTRACE
command. Note however that this interface does not require an IPCS environment to be active.

The EZBCTAPI macro allows users to pass component trace records to the format routine for
processing and capture the formatted output text. There are several functions performed by the
macro:
e SETUP - Define the formatting environment with the various parameters.
* FORMAT - Pass a record to the formatting interface.
* TERM - Delete the formatting environment allowing final output to be shown.
¢ QUIT - Delete the formatting environment without any final output. Summary and
statistical reports created at the end of SYSTCPDA processing will not be formatted.
This request should be used for quick termination of the interface when no further
output is desired

Requirement: High Level Assembler Language, Version 1 Release 4 or higher is required to use
this macro.

Requirements

The requirements for the caller are:

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 27

Minimum authorization: Problem state, and any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be addressable in the primary address space and have a

storage key that matches the PSW key.

Input register information

Before issuing the EZBCTAPI macro, the caller must ensure that the following general purpose
registers (GPRs) contain the specified information:

Register contents
13 The location of a 72-byte standard save area in the primary address space

Before issuing the EZBCTAPI macro, the caller does not have to place any information into
any access register (AR).

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents

0 Reason code, if GPR 15 contains a non-zero return code; otherwise, used as a work
register by the system.

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register contents

0-1 Used as work registers by the system
2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a service.
If the system changes the contents of registers on which the caller depends, the caller must save
them before issuing the service, and restore them after the system returns control.

Performance implications

None.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 28

Syntax

The EZBCTAPI macro is written as follows:

name

EZBCTAPI

SETUP

FORMAT

TERM

QUIT
,WORKAREA=workarea
,APIl=epaaddr
,COMP=name
,CTE=record
,LDTO=stcktime
,LSO=stcktime

,MAXLINE=number

,JNMCTF=epaaddr
,OBTAIN=epaaddr
,OPTIONS=options
,PRTSRV=epaaddr
,RELEASE=epaaddr

,RETCODE=retcode

,REPORT=FULL

name : Symbol. Begin name in column 1.

One or more blanks must precede EZBCTAPI.

One or more blanks must follow EZBCTAPI.

workarea : RX-type address or register (2) - (12).
epaaddr: RX-type address or register (2) - (12).
name: RX-type address or register (2) - (12).
record : RX-type address or register (2) - (12).
stcktime : RX-type address or register (2) - (12).
stcktime: RX-type address or register (2) - (12).

number: RX-type address or register (2) - (12).

epaaddr: RX-type address of register (2) - (12)
epaaddr : RX-type address or register (2) - (12).
options : RX-type address or register (2) - (12).
epaaddr : RX-type address or register (2) - (12).
epaddr : RX-type address or register (2) - (12).

retcode: RX-type address or register (2) - (12), or
(15).

Default: REPORT=FULL

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp

29

,REPORT=SHORT
,REPORT=SUMMARY
,REPORT=TALLY

,RSNCODE=rsncode rsncode: RX-type address or register (2) - (12) or
(0).

,TABLE=name name: RX-type address or register (2) - (12)

, TIME=GMT Default: TIME=LOCAL

,TIME=LOCAL

,USERTOKEN=token token: RX-type address or register (2) - (12).

,MF=(L,list_addr) list addr : RX-type address or register (1) - (12)

,MF=(L,list_addr ,attr) Default: MF=(L,list_addr ,0D)

MF=G

,MF=(M_list_addr)

,MF=(M_list_addr,COMPLETE)
,MF=(E list_addr)

JMF=(Elist addr, COMPLETE)

Parameters

The parameters are explained below. First select one of the four required parameters that define
the function that the interface is to perform.

SETUP Initialize the interface by allocating and initializing control blocks and loading the
component trace format table. Most of the other keywords can be specified to define the
processing options.

FORMAT Locate the specific entry in the format table and call the format routine. The CTE
keyword identifies the record to be formatted.

TERM End the interface by calling the filter routine one last time to issue any final reports
and release all the allocated resources.

QUIT End the interface calling the filter routine one last time to release all the allocated
resources acquired by the formatter.

Next select the optional parameters that you need:

,/API=epiaddr

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 30

Specifies the location of a word that contains the location of the EZBCTAPI routine. Use this
keyword in the SETUP call to pass the entry pointer address to the interface. This may be useful
to avoid the overhead of loading and deleting this reentrant interface module. If the API
keyword is not used, then the EZBCTAPI routine will be loaded by the SETUP function and
deleted by the TERM or QUIT function.

,COMP=name
Specifies the location of a eight byte character field containing the name of the CTRACE
component. If not specified, the component name of 'SYSTCPDA is used.

,CTE=record
Specifies the location of a component trace record. Used with the FORMAT function.

,LDTO=stcktime

Specifies the location of eight byte store clock field. This field is in units of STCK timer
units. It contains the local date time offset. This field is used to convert STCK time stamps in
the component trace records to local time. If not specified, the field CVTLDTO is used as the
default.

,LSO=stcktime

Specifies the location of eight byte store clock field. This field is in units of STCK timer
units. It contains the leap seconds time offset. This field is used to convert STCK time stamps in
the component trace records to GMT time and local time. If not specified, the field CVTLSO is
used as the default.

,MAXLINE=number
Specifies the location of a word than contains the maximum line width for formatted output.
The minimum value is 60 and the maximum value is 250. The default value is 80.

,NMCTF=epaddr

Specifies the location of a word that contains the location of the EZBNMCTF stub routine.
This may be useful to avoid the overhead of loading and deleting this reentrant interface module.
This keyword should be used on each invocation that will invoke the interface (MF=(E)). If the
NMCTF keyword is not specified, then the EZBNMCTF routine will be called by the macro as
an external reference and EZBNMCTF must be link-edited with the application program.

,OBTAIN=epaaddr

Specifies the location of a word that contains an entry point location of a routine used by the
interface to obtain storage. The default is a routine that uses the STORAGE (OBTAIN) macro to
obtain the storage from the operating system. If the OBTAIN keyword is specified then the
RELEASE keyword must be specified. It is passed these pointers in a parameter list addressed
by register 1:

* The work area
The four word user token (see USERTOKEN)
The word where the location of the obtained storage is returned.
The word with the length of the storage to be obtained.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 31

These return codes are supported:
* 00 The storage was obtained. The location of the storage is returned.
* 04 The storage could not be obtained. The address is null.

Standard calling conventions are used to call the routine in the same environment when
the EZBCTAPI interface was called.

,OPTIONS=options

Specifies the address of options to be passed to the packet trace formatter. These options are

described by EZBYPTO data area. See the "Passing options to the Packet Trace Formatter"
section for more information.

,PRTSRV=epaaddr

Specifies the location of a word that contains entry point location of a routine used by the
interface and formatter to print lines of text and messages. It is passed these parameters in a
parameter list addressed by register 1:

* The BLSUPPR2 parameter list.
¢ The four word user token (see USERTOKEN)

These return codes are supported from the print routine
* 00 The line of text was printed.
* (04 The line was not printed and future output is to be suppressed.

Standard calling conventions are used to call the routine in the same environment when the
EZBCTAPI interface was called: .

To generate the BLSUPPR2 parameter list use the BLSUPPR2 macro:
PPR2 BLSUPPR2 DSECT=YES

The BLSUPPR2 macro is described in MVS Programming: Assembler Services Reference,
Volume 1 (ABEND-HSPSERYV).

The following fields are defined as:

PPR2BUF Location of buffer containing the data to be printed.

PPR2BUFL Length of data in the buffer to be printed

PPR2MSG The buffer contains a message

PPR20OVIN Overflow indentation level (0 for the first line, 2 for subsequent
lines)

The print buffer is in the EBCDIC code page. The buffer has been translated to change

unprintable characters to periods. The new line character (x’15°) is located in each data line and

the print function is called for each new line. Should the data buffer be larger than the

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

32

MAXLINE value minus 1, then the print function will be called as many times as needed with
the rest of the print line with PPR2OVIN set to 2.

,2RELEASE=epaaddr

Specifies the location of a word that contains the entry point location of a routine used by the
interface to release storage. The default is a routine that uses the STORAGE (RELEASE) macro
to release the storage back to the operating system. If the RELEASE keyword is specified, then
the OBTAIN keyword must be specified.

It is passed these pointers in a parameter list addressed by register 1:
* The work area
* The four word user token (see USERTOKEN)
* The word with the location of the storage to be released
* The word with the length of the storage to be obtained.

These return codes are supported:
* (00 The storage was released.
* (04 The storage could not be released.

Standard calling conventions are used to call the routine in the same environment when the
EZBCTAPI interface was called.

,RETCODE=retcode

Specifies the location where the interface return code is stored. The return code is also in
general purpose register (GPR) 15.

,REPORT=FULL
,REPORT=SHORT
,LREPORT=SUMMARY
,REPORT=TALLY

SHORT
Formats the IP protocol headers. This includes the component mnemonic, entry identifier,
date and time, and a description of the trace record.

SUMMARY
Requests one line per trace record. Key fields from each qualifying trace record will be
printed following the date, time, and entry description.

FULL
Formats the IP protocol headers and packet data. This includes the component mnemonic,
entry identifier, date and time, and a description of the trace record. FULL is the default report
option.

TALLY

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 33

Requests a list of trace entry definitions for the component and counts how many times each
trace entry occurred.

,LRSNCODE=rsncode
Specifies the location where the interface reason code is stored. The reason code is also in
GPR 0. EZBCTAPI provides a reason code if the return code is other than 0.

,TABLE=name

Specifies the location of the eight (8) character field that contains the name for the format
table (EZBPTFM4) or two words. The first word contains zeros and the second word contains
the entry point address of EZBPTFM4. If not specified or the name is not used, then the
EZBPTFM4 table is loaded. This may be useful to avoid the overhead of loading and deleting
this format table.

,TIME=GMT
,TIME=LOCAL
Specifies the conversion of the time field in the component trace records. The default is
TIME=LOCAL.
GMT: The time is shown as Greenwich Mean Time
LOCAL: The time is shown as local time.

,USERTOKEN=token

Specifies the location of a four (4) word field that is copied and passed to the print service
routine and the storage functions. The default is four words of zeros.

" WORKAREA=workarea

The location of a 16K work area used by the interface for its control blocks, work area, and
save areas. The work area will be cleared by the SETUP function. This work area must remain
intact until the TERM or QUIT function is called. The work area cannot be shared across tasks.
Specification is optional; if not specified, a 16K work area is obtained.

,JMF=(L,list_addr)
,JMF=(L,list_addr,attr)

Requests that a EZBCTAPI parameter list be defined. List_addr is the name assigned to the
list. attr is an optional attribute used to define the parameter list. The default is 0D. No other
keywords may be used with this macro format.

JMF=G

Requests that the EZBCTAPI t parameter list description be generated. No other keywords
may be used with this macro format.

,JMF=(M_,list_addr)
JMF=(M,list_addr, COMPLETE)

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 34

Request that the EZBCTAPI parameter list be modified. COMPLETE requests that the

parameter list be zeroed before any modifications.

,JMF=(E,list_addr)
,JMF=(E,list_ addr, COMPLETE)

Requests that the EZBCTAPI parameter list be modified. COMPLETE requests that the
parameter list be zeroed before any modifications. In addition, for the SETUP function the
EZBCTAPI interface program is loaded and for the TERM and QUIT functions the interface
program is deleted (see the API keyword to modify this behavior). The interface program is then

called.

Note: COMPLETE does not apply to TERM and QUIT functions.

This matrix shows supported functions and keyword combinations.

Keyword

Input
/Output

MF(E)
SETUP

MF(E)
FORMAT

MF(E)
TERM

MF(E)
QUIT

MF(M)

MF(L)

MF(G)

WORKAREA

I

X

API

X

X

X

COMP

X

CTE

LDTO

LSO

<l el Ral Bl Bal B

NMCTF

MAXLINE

OBTAIN

OPTIONS

PRTSRV

RELEASE

REPORT

<l B Bal Bl Kal B

RETCODE

RSNCODE

TABLE

TIME

ol kg

USERTOKEN

L Bl Bl Bl Kol Bl Bl Bl Bl Rl]) T Bl I e

ol Kl Bl Bl Bl Rl Kl A el Rl Bl el Rl B

I Input parameter

0] Output parameter
R Required parameter
X Optional parameter

ABEND codes

2003/10/30 15:09:18

V1RS Network Mgmt User's Guide.lwp

35

None
Return and reason codes

When control returns from EZBCTAPI, GPR 15 (and retcode, if you coded RETCODE) contains
one of the following return codes. GPR 0 (and rsncode, if you coded RSNCODE) might contain
one of the following reason codes. The following table displays interface return and reason codes
and their meaning.

Hexadecimal Hexadecimal Meaning
return code reason code
(CtApi IRtnCd) | (CtApi IRsnCd)
00 Function was successful
04 The FORMAT function was not successful
04 10 The SETUP function was not done or did not complete.
04 11 The trace record is not the correct format
04 18 The trace record could not be identified
04 1B The filter/analysis routine failed.
08 The SETUP function was not successful
08 01 The SETUP function has already initialized the interface
08 02 Print callback function was not provided
08 03 Unable to load format table
08 04 Unable to allocate storage for tables
08 05 Unable to load analysis/format exit
0C XX Unknown function code xx
10 Unable to load the function interface
10 04 The EZBCTAPI interface routine could not be found
10 08 An error occurred loading the EZBCTAPI interface routine
14 Unable to obtain storage for a work area
14 04 The program was not able to obtain storage for the work
area
18 XXXXXXXX The interface routine or the analysis routine abended.
xxxxxxxx is the abend code.
Formatter return and reason codes
Hexadecimal Hexadecimal Meaning
return code reason code
(CtApi FRtnCd) | (CtApi FRsnCd)
00 - Normal processing of the entry
04 - Reread the records from the first
08 - The current entry is bypassed
0C - No further calls to the format/analysis routine
10 - Ending of the subcommand

These are the return codes described in z/ZOS MVS Interactive Problem Control System (IPCS)
Customization for a CTRACE formatter filter/analysis exit. The packet trace formatter uses only
a return code of 0 or 8. The interface return code (CtApi_IRtnCd) is always 0 for formatter

2003/10/30 15:09:18 V1RS5 Network Mgmt User's Guide.lwp 36

return codes of 0, 4, 8, and 12, otherwise, an interface return code of 4 is returned (see interface
reason code x'1B").

To capture trace records, perform the following steps:

1. Update the TCP/IP profile to allow the copying of trace data: NETMON itor
PKTTRCService
2. Grant authority to an application program to capture trace data.

* Make the program APF authorized, and

* Define the user with BPX.SUPERUSER, or

* Permit the user to access EZB.NETMGMT.sysname.tcpipname.SYSTCPDA
3. Start the application program
4. Issue Vary Tcpip,,PKTTRACE or Vary Tcpip,,DATTRACE commands to collect the
data of interest.

In the expansion of step 3 above, the application program will do the following:

* Define the format options in the EZBYPTO control block, passed to EZBCTAPI.

* Use the EZBCTAPI macro to setup the packet trace formatter interface.

* Connect an AF_UNIX socket to the SYSTCPDA service (described in the preceding
chapter).

* Allocate a 64K buffer.

* Inaloop, read a record from the AF_UNIX socket. The first word of each record
contains the length of the record. The record contains tokens that describe a TCP/IP
trace buffer that contains data to be copied.

¢ Call EZBTMICI to copy the TCP/IP trace buffer to the application 64K buffer.

* For areturn value of zero or negative, read the next record from the AF UNIX
socket.

* The return value contains the amount of data moved into the buffer. The buffer
contains a series of Component Trace Entries (CTE). A CTE is described by the
ITTCTE data area.

* Process each CTE in the buffer by calling the format function of EZBCTAPI, passing
the address of the CTE.

¢ The length of each CTE is the unsigned halfword at the start of each CTE. A CTE
with a length of zero indicates the end of the buffer. This last halfword of zeros is not
included in the return value of the amount of data moved.

* Loop to read the next record from the socket.

At termination, free the 64K buffer, close the socket, and call the TERM function of

EZBCTAPL

Example

Initialize the EZBCTAPI exit environment.

*

COPY EZBCTAPI

EZBCTSMP CSECT

SAVE (14,12),,*

LR 12,15 SET A BASE REG STER
USI NG EZBCTSMP, 12
LA 15, MAI NSA CHAI N THE SAVE AREA

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 37

ST 15, 8(, 13)
ST 13, 4(, 15)

LR 13,15
*/************'k***/
[I NI TI ALI ZE THE OPTI ONS */
*/**/
PTO USI NG EZBYPTO, APTO MAP THE OPTI ONS AREA

XC APTO, APTO ZERO THE OPTI ONS FLAGS AND PTRS

LA 0, EZBYPTO_SzZ SET LENGTH OF OPTI ONS AREA

STH 0, PTO PTO_LENGTH
LA 0, EZBYPTO_SZ- 4
STH 0, PTO. PTO_OFFSET
M/C PTO. PTO _CBI D, =A(PTO_EYEC)
* SET FORVAT(DETAI L) SEGVENT REASSEM STATS(DETAI L)
a PTO. PTO_FORVAT, L' PTO_FORVAT
a PTO PTO_FMIDTL, L' PTO_ FMIDTL
a PTO. PTO_STATS, L' PTO_STATS
NI PTO PTO_STCSUM 255- L' PTO_STCSUM SET STAT(DETAI L)
a PTO. PTO_REASM L' PTO_REASM
a PTO PTO_SEGVENT, L' PTO_SEGVENT

OPEN (PRI NTDCB, QUTPUT) OPEN THE PRI NT FI LE

STORACE OBTAI N, LENGTH=CTAPI _V\KSI ZE, ADDR=(8)
GET STORAGE FOR ABDPL WORK AREA

* ok F

| NTI ALI ZE THE EZBCTAPI PARAMETER LI ST
EZBCTAPI WORKAREA=(8) ,
==CL8' SYSTCPDA',
PRTSRV==A(PRI NTSRV) ,
OPTI ONS=APTO,
REPORT=FULL,
TI ME=LOCAL,
USERTOKEN=PRI NTTKN,
MAXLI NE==A(L' PRI NTBUF- 1),
MF=(M CTAPI L, COVPLETE)

*
* GET A BUFFER FOR READI NG BUFFERS
*

STORAGE OBTAI N, LENGTH=65635
ST 1, ABUFFER31

*
* SET UP THE FORMATTER | NTERFACE
*

EZBCTAPI SETUP, MF=(E, CTAPI L), SET UP THE | NTERFACE
RETCODE=RETCDE, RSNCODE=RETRSN

LTR 15,15 DID TH S WORK

BNZ ERRCR

*

* READ IN A TOKEN
*
LOOPL DS OH
CALL BPXLRED, (SOCKET,
ABUFFER, PRI MARYALET, LBUFTKN,
RETVAL, RETCDE, RETRSN) , VL

L 15, RETVAL
LTR 15,15
BNP ECF CLOSE SOCKET AND EXI'T

READ | N DATA BUFFERS

ST 15, LBUFTKN
CALL EZBTM C1, (BUFTOKEN, LBUFTKN, RETVAL, RETCDE, RETRSN)

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

O0000000

[@)@)

LOOP2

ECF

*
*

ERROR

*

DATA

* %k ok

MAI NSA

SOCKET
ABUFFER
PRI MARYAL
LBUFTKN
BUFTOKEN
RETVAL
RETCDE
RETRSN
BUFPTR

ABUFFER31
*

APTO

*

PRI NTTKN

*

PRI NTDCB

*

PRI NTBUF
PRI NTCC
PRI NTDAT
*

PRI NTSA
*

L 15, RETVAL

LTR 15,15 WAS DATA MOVED?

BNZ LOOP1 NO, GET NEXT ONE

L 3, ABUFFER31 GET ADDRESS THE BUFFER
USI NG CTE, 3 MAP THE BUFFERS

DS OH

LH 2, CTELENP GET LENGTH OF TH S RECORD
N 2, =X' 0000FFFF' ALLOW UP TO 64K RECORDS
LTR 2,2 IS TH 'S THE END

BNP LOOP1 YES, DO THE NEXT BUFFER

EZBCTAPI FORMAT, CTE=CTE,
MF=(E, CTAPI L)

ALR 3,2 PO NT TO THE NEXT CTE
B LOOP2 DO THE NEXT RECORD
DS OH

STORAGE RELEASE, LENGTH=CTAPI _V\KSI ZE, ADDR=(8)
GET STORAGE ABDPL WORK AREA
EZBCTAPI TERM MF=(E, CTAPI L)
CLCSE (PRI NTDCB)
L 13, 4(13)
RETURN (14, 12), RC=0

DS OH
LTORG
DC 18A(0)

EZBCTAPI MF=(L, CTAPI L)

EZBCTAPI MF=G

DC FO FI LE SYSTEM SOCKET NUVBER
DC A(BUFTOKEN)

ET DC FO

DS F LENGTH OF BUFFER TOKEN
DS CL64 A BUFFER TOKEN

DS F

DS F

DS F

DC OF

DC A0, 0) ALET, H 64BI TS

DC A(0) ADDRESS OF THE BUFFER
DS CL(EZBYPTO S2) SPACE FOR THE OPTI ONS
DC OF TOKEN FOR PRI NT SERVI CE

DC A(PRI NTDCB)
DC A(PRI NTSA)
DC A(PRI NTBUF)
DC A(0)

DCB DDNAME=SYSPRI NT, DSORG=PS, MACRF=PM
RECFM=FBA, LRECL=133

DS 0CL133 A PRI NT BUFFER

DC c

DC cL132'

DC 18A(0) A SAVE AREA FOR PRI NT SERVI CE

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

39

EJECT
PRI NTSRV CSECT
SAVE (14,12),,*

LR 12,15
USI NG PRI NTSRV, 12
LR 2,1

USI NG PLI ST, 2
LM 2,3, PLIST
USI NG PPR2, 2

USI NG PTKN, 3

LM 4,6, PTKN

5 ===> SAVE AREA
6 ===> PRI NT BUFFER

USI NG PBUF, 6

ST 5,8(,13)

ST 13,4(,5)

LR 5,13

*
L 7, PPR2BUF
L 8, PPR2BUFL

Wi PBUFLNE-1, C '
MC PBUFLNE, PBUFLNE- 1

LTR 8,8
BNP PSRV0001
BCTR 8,0

EX 8, COPYLI NE

*

PSRV0001 DS OH
*

L 4, PTKNDCB
PUT (4), PBUF
L 13, 4(, 13)

RETURN (14, 12), RC=0

*

COPYLI NE WC PBUFLNE(0), 0(7)
*

*

PPR2 BLSUPPR2 DSECT=YES
PLIST DSECT
PLPR2 DS A
PLTKN DS A
*

PTKN DSECT ,
PTKNDCB DS A
PTKNSA DS A
PTKNBUF DS A
*

PBUF DSECT

PBUFCC DS C
PBUFLNE DS CL132
*

SAVE REG STERS

SET BASE REAQ STER

MAP | T

COPY PARM LI ST PO NTER

GET PLI ST PO NTERS

GET PO NTERS TO STUFF

CHAI N THE SAVE AREAS

GET ADDRESS OF THE BUFFER
GET I TS LENGTH

BLANK | T ALL OUT

IS THERE A LINE

NO, JUST DO A BLANK LI NE
TO EXECUTE LENGTH

COPY LINE OF TEXT

GET ADDRESS OF PRI NT DCB
PRI NT THE LI NE OF TEXT
UNCHAI N THE SAVE AREAS
RETURN TO CALLER

I NDI CATE PRI NT WAS K
COPY THE PRI NT LI NE

PPR2 PARAMETER LI ST

PO NTER TO PPR2 PARM LI ST
PO NTER TO OUR TOKEN

OUR TOKEN

PO NTER TO THE DCB

PO NTER TO SAVE AREA
PO NTER TO BUFFER AREA

QUTPUT BUFFER
CARRI AGE CONTROL
QUTPUT LI NE

COPY FORMAT OPTI ONS

Passing options to the Packet Trace formatter

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp 40

The EZBYPTO macro describes a data area that may be passed using the EZBCTAPI OPTIONS
keyword. This data area contains flags, values, and pointers that describe packet trace formatter

options. The table below shows the option and field settings required to select the option.

These same options are available through the SYSTCPDA CTRACE formatter. You can find a
detailed explanation in z/OS Communications Server: IP Diagnosis.

Available EZBYPTO options

Option Field setting
ASCII Pto Dump=1;Pto DmpCd=PtoAscii;
BASIC(DETAIL) Pto Basic=1;Pto BasDtl=1;
BASIC(SUMMARY) Pto Basic=1;Pto BasDtl=0;
BOTH Pto Dump=1;Pto DmpCd=PtoBoth;
CLEANUP(nnnnn) Pto Cleanup=1;Pto Gclntvl=nnnnn;
DUMP Pto Dump=1;
DUMP(nnnnn) Pto Dump=1;Pto MaxDmp=nnnnn;
EBCDIC Pto Dump=1;Pto DmpCd=PtoEbcdic;
FORMAT(DETAIL) Pto Format=1;Pto FmtDtl=1;
FORMAT(SUMMARY) Pto Format=1;Pto FmtDtl=0;
FULL Pto Dump=1,Pto_Format=1,Pro_FmtDtl=

1,
HEX Pto Dump=1;Pto DmpCd=PtoHex;
INTERFACE Pto Links@=Addr(list),Pto Links#=nn
IPADDR(list) Pto Addr@=Addr(list);Pto Addr#=nn
PORT(list) Pto Port@=Addr(list);Pto Port#=nn
REASSEMBLY (nnnnn) Pto ReAsm=1;Pto MaxRsm=nnnnn
REASSEMBLY(DETAIL) Pto ReAsm=1;Pto RsmSum=0
REASSEMBLY(SUMMARY) Pto ReAsm=1;Pto RsmSum=1
NOREASSEMBLY Pto ReAsm=0;
SEGMENT Pto Segment=1;
NOSEGMENT Pto Segment=0;
SESSION(DETAIL) Pto_SesRpt=Pto_SesDetail;

Pto Session=1;
SESSION(SUMMARY) Pto_SesRpt=Pto_SesSummary;

Pto Session=1;
SESSION(STATE) Pto SesRpt=Pto SesState; Pto Session=1;
STATISTICS(DETAIL) Pto Stats=1;Pto StcSum=0;
STATISTICS(SUMMARY) Pto Stats=1;Pto StcSum=1;
STREAMS(nnn) Pto Streams=1;Pto StrmBuf=nnn
STREAMS(DETAIL) Pto Streams=1;Pto StmSum=0;
STREAMS(SUMMARY) Pto Streams=1;Pto StmSum=1;
SUMMARY Pto Summary=1;
TALLY PtoiStatsz 1 ;PtoiStcSumZO;

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp

41

Notes:

1. A packet may span multiple trace records. When segmented records are encountered, the
SEGMENT option recreates the packet as a single trace record. The packet is not used
until the last trace segment record is passed to the formatter. Until that time, the packet is
saved in a temporary buffer. Use the NOSEGMENT option to prevent this. The
CLEANUP value can be used to free the temporary buffers for segments that will not be
completed. The QUIT or TERM function will free all unprocessed segments.

2. When the NOSEGMENT option is used only the first segment has the IP header and
protocol headers.

3. A packet may be fragmented. When you specify the REASSEMBLY option, the
formatter saves the fragments in a temporary buffer until all the fragments have been
processed to recreate the original complete packet. The packet is not used until the last
trace record is passed to the formatter. The CLEANUP value frees temporary buffers that
have not completed, for reassembly. The QUIT or TERM function frees all unprocessed
fragments.

4. Use the NOREASSEMBLY option to prevent this saving of records.

5. Ifthe CLEANUP value is zero, then the temporary buffers are not released until the

QUIT or TERM function.
You can use the EZBYPTO options control block to request multiple reports.
7. Use of the EZBCTAPI TERM function creates the SESSION, STATISTICS and

STREAMS reports.

o

Using the formatter

There are two ways of passing the formatter truncated records so that trace records contain only
headers.

1. Use the ABBREV keyword of the PKTTRACE command to truncate traced records. No
matter the value of ABBREV, the record will always contain the IP header and protocol
header.

2. Shorten the data passed to the formatter. Use these steps:

a. Determine if the trace record is the first segment of packet. The sequence number
field of the header (PTH_SeqNum) will be zero. The record contains the IP header
and protocol header (if any). Otherwise the record just contains data.

b. Set the CTELENP field (the first halfword of a trace record) to the smaller of
CTELENP or the sum of the size of the CTEFDATA field, the size of the PTH_HDR
field, the size of the IP header and the size of the protocol header.

c. Setthe PTO SEGMENT flag to zero. The length also includes the two byte length
field CTELENE.

Records passed to the formatter must always contain at least the ITTCTE, PTHDR t, the IP

header and the protocol header.

The header files and macros are described in the following tables.

‘ Header files for ‘ Macros for ‘ Contents

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 42

C/C++ programs Assembler programs

n/a EZBCTAPI Used to format the records created by
the SYSTCPDA interfaces.

EZBYCTHH EZBCTHDR Packet trace header describing the
TCP/IP packet for types 1, 2, and 3
trace records.

EZBYPTHH EZBYPTHA Packet trace header describing the
TCP/IP packets for types 4 and 5 trace
records.

n/a EZBYPTO Describes packet trace options for the
formatter.

These header files and macros are shipped in the hlq.SEZANMAC data set (hlq refers to the high
level qualifier used when the product was installed on your system). This data set must be
available in the concatenation when compiling or assembling a part that makes use of these

definitions.

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp 43

Chapter 4 - Application interface for monitoring TCP/UDP
end points and TCP/IP storage

z/OS Communications Server provides a high-speed low-overhead callable programming
interface for network management applications to access data related to the TCP/IP stack.

Name Description Supported release
EZBNMIFR Interface to request network management z/OS V1R4, VIRS
data from TCP/IP

The EZBNMIFR interface can be invoked to obtain the following types of information:
* Active TCP connections.
* Active UDP end points.
* Active TCP listeners.

* TCP/IP storage utilization.

This chapter describes the details for invoking the EZBNMIFR interface with the defined input
parameters and for processing the output it provides.

Overview

EZBNMIFR is a callable interface: a program makes a call specifying a request buffer with
caller storage allocated to accommodate the returned response buffer. This callable interface to
collect data about TCP and UDP end points is a polling type of interface that will show status at
a given point in time for selected or all end points, as opposed to an asynchronous interface that
will present all state changes. The caller can specify filters to limit the returned data to a specific
set of information.

Configuration and enablement

There is no configuration required to enable this interface, as this is a polling interface.

EZBNMIFR - Request network management data from TCP/IP

Function
Request network management data from TCP/IP.
Requirements

Minimum authorization: ~ Supervisor state, executing in system key, APF-authorized,
Or superuser

Dispatchable unit mode: ~ Task or SRB

Cross memory mode: PASN=SASN=HASN

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 44

AMODE: 31- bit, or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Not applicable

Control parameters: Must reside in an addressable area in the primary address space

and must be accessible using caller's execution key

Format

Invoke EZBNMIFR, as follows:

For C/C++ callers:

EZBNMIFR(TcpipJobName,
RequestResponseBuffer,
&RequestResponseBufferAlet,
&RequestResponseBufferLength,
&ReturnValue,

&ReturnCode,
&ReasonCode);

For Assembler callers:

CALL EZBNMIFR,(TcpipJobName,
RequestResponseBuffer,
RequestResponseBufferAlet,
RequestResponseBufferLength,
ReturnValue,

ReturnCode,
ReasonCode)

Parameters

TcepipJobName
Supplied and returned parameter
Type: Character
Length: Doubleword
The name of an 8-character field that contains the EBCDIC job name of the target

TCP/IP stack. If the first character of the supplied job name is an asterisk (*), the call is

made to the first active TCP/IP stack and its job name is returned.

RequestResponseBuffer
Supplied parameter
Type: Character
Length: Variable

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

45

The name of the storage area that contains an input request. The input request must be in
the format of a request header (NWMHeader) as defined in the EZBNMRHC header file.

On successful completion of the request, the storage will contain an output response in
the same format.

RequestResponseBufferAlet
Supplied parameter
Type: Integer
Length: Fullword
The name of a fullword which contains the ALET of RequestResponseBuffer. If a
nonzero ALET is specified, the ALET must represent a valid entry in the caller's
dispatchable unit access list (DU-AL).

RequestResponseBufferLength
Supplied parameter
Type: Integer
Length: Fullword
The name of a fullword which contains the length of request/response buffer.

ReturnValue
Returned parameter
Type: Integer
Length: Fullword
The name of a fullword in which the EZBNMIFR service returns one of the following:

* 0 or positive, if the request is successful. A value greater than zero indicates the
number of output data bytes copied to the response buffer.
e -1, if the request is not successful.

ReturnCode
Returned parameter
Type: Integer
Length: Fullword
The name of a fullword in which the EZBNMIFR service stores the return code (errno).
The EZBNMIFR service returns ReturnCode only if ReturnValue is -1.

ReasonCode
Returned parameter
Type: Integer
Length: Fullword
The name of a fullword in which the EZBNMIFR service stores the reason code (errnojr).

The EZBNMIFR service returns ReasonCode only if ReturnValue is -1. ReasonCode
further qualifies the ReturnCode value.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 46

The EZBNMIFR service sets the following return codes and reason codes:

ReturnValue

ReturnCode| ReasonCode Meaning

0

0 0 The request was successful.

-1

ENOBUFS [JRBuffTooSmall The request was not successful. The
request/response buffer is too small to contain all of
the requested information. Some of the requested
information may be returned.

EACCES JRSAFNotAuthorized The request was not successful. The caller is not
authorized.

EAGAIN JRTCPNOTUP The request was not successful. The target TCP/IP

stack was not active.

EFAULT JRReadUserStorageFailed | The request was not successful. A program check
occurred while copying input parameters, or while
copying input data from the request/response
buffer.

EFAULT JRWriteUserStorageFailed | The request was not successful. A program check
occurred while copying output parameters, or while
copying output data to the request/response buffer.

EINVAL JRInvalidValue The request was not successful. An invalid value

was specified in the request/response header.

ETCPERR | JRTcpError The request was not successful. An unexpected

error occurred.

Network Management applications can use any of the following methods to invoke the
EZBNMIFR service:

1.

Issue a LOAD macro to obtain the EZBNMIFR service entry point address, and
then CALL that address. The EZBNMIFR load module must reside in a linklist
data set (e.g. TCP/IP's SEZALOAD load library), or in LPA.

Issue a LINK macro to invoke the EZBNMIFR service. The EZBNMIFR load
module must reside in a linklist data set (for example, TCP/IP's SEZALOAD load
library), or in LPA.

Link-edit EZBNMIFR directly into the application load module, and then CALL
the EZBNMIFR service. Include SYS1.CSSLIB(EZBNMIFR) in the application
load module link-edit.

TCP/IP Network Management Interface Request/Response Format
The general format of the request is:

The request header and the request section descriptors (triplets). A triplet consists of
the offset in bytes of the request section relative to the beginning of the request
buffer, the number of elements in the request section, and the length of a request
section element. The following requests can be made:

GetTCPListeners - obtain information about active TCP listeners.
GetUDPTable - obtain information about active UDP sockets.
GetConnectionDetail - obtain information about active TCP connections.
GetStorageStatistics - obtain information about TCP/IP storage utilization.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 47

* The request sections. The following types of request sections can be specified:
* Filters (optional) - A subset of TCP or UDP end points can be selected based on
any combination of the following items:

Filter item

Filter item value

ASID

A 16-bit address space number of a socket application address space.

Resource Name

An EBCDIC job name, right-padded with blanks if less then 8 characters long, of a
socket application address space ("Client Name" in NETSTAT displays). A question
mark can be used to wildcard a single character, and an asterisk can be used to
wildcard O or more characters. e.g. a value of A?C* will match all names with a first
character "A" and a third character "C", but will not match two-character names or
names beginning with "B" through "Z", etc.

Resource ID

A 32-bit unsigned binary TCP/IP resource identifier ("Client ID" in NETSTAT
displays).

Server Resource ID

A 32-bit unsigned binary TCP/IP resource identifier of the related server listening
connection.

Local IP Address

A 32-bit IPv4 address or a 128-bit [Pv6 address. The local IP address filter value is
specified as the IP address field within a sockaddr structure. The sockaddr address
family field must be set to indicate whether the local IP address filter value is an [Pv4
address or an IPv6 address. For IPv4 connections, the local IP address filter value
may be specified as either an IPv4 address (e.g., 9.1.2.3) or as an IPv4-mapped IPv6
address (e.g., ::FFFF:9.1.2.3). For all connections, a null address may be specified as
either an IPv4 address (0.0.0.0), as an IPv4-mapped IPv6 address (::FFFF:0.0.0.0), or
as an IPv6 address (::).

Local IP Address Prefix

A 16-bit signed binary value specifying the number of local IP address bits to use,
e.g., a value of 12 means that the first 12 bits of a connection's local IP address will
be compared to the first 12 bit of the local IP address filter value. A value of 0 means
that all address bits will be compared. A value greater than 32 for an IPv4 address, or
greater than 128 for an IPv6 address, means that all address bits will be compared.

Local Port

A 16-bit unsigned binary port number.

Remote IP Address

A 32-bit IPv4 address or a 128-bit [IPv6 address. The remote IP address filter value is
specified as the IP address field within a sockaddr structure. The sockaddr address
family field must be set to indicate whether the remote IP address filter value is an
IPv4 address or an IPv6 address. For IPv4 connections, the remote IP address filter
value may be specified as either an IPv4 address (e.g. 9.1.2.3) or as an [Pv4-mapped
IPv6 address (e.g. ::FFFF:9.1.2.3). For all connections, a null address may be
specified as either an [Pv4 address (0.0.0.0), as an IPv4-mapped IPv6 address
(::FFFF:0.0.0.0), or as an IPv6 address (::).

Remote IP Address
Prefix

A 16-bit signed binary value specifying the number of remote IP address bits to use,
e.g. a value of 12 means that the first 12 bits of a connection's remote IP address will
be compared to the first 12 bits of the remote IP address filter value. A value of 0
means that all address bits will be compared. A value greater than 32 for an IPv4
address, or greater than 128 for an [Pv6 address, means that all address bits will be
compared.

Remote Port

A 16-bit unsigned binary port number.

You can specify up to a maximum of 4 filter elements. Each filter element can
contain any combination of the items listed in the table above. A filter element with
no applicable items matches any connection. A connection must match all items
specified in a filter element to pass that filter check; a connection must pass at least
one filter check to be selected. For example:

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp

48

Filter definition example

Two filters are defined:

The following TCP connections exist:

1. Local IP Address =9.0.0.1, Local Port = 5000
2. Resource Name = FTP*

1. Resource Name = FTP1, Local IP Address = 9.0.0.2, Local Port =

5001

2. Resource Name = FTP2, Local IP Address =9.0.0.1, Local Port =

5000

3. Resource Name = USRI, Local IP Address =9.0.0.1, Local Port =

5002

When a GetConnectionDetail request is made, connection 1 is selected because it matches filter
2, connection 2 is selected because it matches filter 1, and connection 3 is not selected because it
does not match either filter.

Specifying no filters (triplet offset field is zero, or triplet element count field is zero, or triplet
element length field is zero) means that the caller is requesting information for all end points.

The following table shows which filter items are applicable for each request type. If you specify
inapplicable filters for a particular request type, they are ignored.

Filter items GetTCPListener | GetUDPTable GetConnectionDetail | GetStorageStatistics
S
ASID Yes Yes Yes No
Resource name | Yes Yes Yes No
Resource ID Yes Yes Yes No
Server resource | No No Yes No
1D
Local IP Yes Yes Yes No
address
Local IP Yes Yes Yes No
address prefix
Local port Yes Yes Yes No
Remote IP No No Yes No
address
Remote IP No No Yes No
address prefix
Remote port No No Yes No
2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 49

The general format of the response is:

* The response header, the request section descriptors (triplets), and the response
section descriptors (quadruplets).

A quadruplet consists of the offset in bytes of the response section relative to the
beginning of the response buffer, the number of elements in the response section,
the length of a response section element, and the total number of connections that
passed the request filter checks.

The response header has the number of bytes required to contain all the requested
data. When the return code is ENOBUFS, use this value to allocate a larger
request/response buffer and reissue the request.

* The request sections.
* The response sections. One of the following types of response section will be
returned:

TCP Connection Information
TCP Listener Information
UDP Connection Information
TCP/IP Storage Statistics

The EZBNMRHC header file contains the NMI request and response data structure definitions
for C/C++ programs. The EZBNMRHA macro contains the NMI request and response data
structure definitions for Assembler programs.

The C/C++ data structure definitions are:

Typedefs
t ypedef unsigned int NV _ui nt ;
t ypedef unsi gned short NWM ushort ;
t ypedef unsi gned char NWM _uchar ;
t ypedef unsigned | ong | ong NWM ul | ;
Triplet
t ypedef struct /* Network Management Section Triplets */
{
NWM_ui nt NWMIOFfset; /* OFfset to section */
NWM_ui nt NWMTLengt h; /* Length of each section el enent */
NVWM _ui nt NWWMTNunber ; /* Nunber of section elenments */
} NWMITi pl et;
Quadruplet
t ypedef struct /* Networ k Managerment CQutput Quadrupl et */
NV _ui nt N fset; /* OFfset to section */
NWM_ui nt NWMQLengt h; /* Length of each section el enent */

NWM ui nt NWMNurber ; /* Nunber of section el enents returned */
NWM_ui nt NWQWVAt ch; /* Nunmber section el ements that

mat ched filters * [

/* Nunber < Match inplies that the output buffer is too small */

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 50

} NWWMQuadr upl et ;
Request/Response Header

typedef struct { /* Header overlay NWHeader
NWM ui nt NWvHeaderldent; /* Header Identifier
(required input)
#defi ne NWWHEADERI DENTI FI ER OxD5E6DAC8 /* EyeCat cher " NWWH'
NWM_ui nt NWVHeader Lengt h; /* Length of record header

(required input)
NVWM ushort NWWer si on; /* NetWork Monitor Version
(required input)
#defi ne NWWERSI ON1 1 /* First version
#def i ne NWMCURRENTVER NWWERSI ON1 /* Current version
NVWM ushort NWMType; /* NetWbrk Monitor Type

(required input)
#defi ne NWTCPCONNTYPE 1 [* TCP Connection Rec Type
#defi ne NWMICPLI STENTYPE 2 [* TCP Listen Record Type
#defi ne NWWMUDPCONNTYPE 3 /* UDP Connection Rec Type

#defi ne NWWBTGSTATSTYPE 4 /* Storage Rec Type

NWM_ui nt NWWByt esNeeded; /* Length of buffer required to
contain all requested data

(out put)
char NWvHeader Rsvd01[20] ; /* Reserved
uni on {
NWMTTi pl et NWWFi | t er sDesc;
#defi ne NVW_FI LTERNUVBER MVAX 4 /* Maxi mum nunber of filters
} NVWM nput Dat aDescri pt ors; /* I nput section descriptors
(optional input)
uni on {

/* The TCP Connection, TCP Listen, UDP Connection, and Storage
/* Statistics sections are only avail abl e on out put
NWWQuadr upl et NWMTCPConnDesc;
NWWQuadr upl et NWMTICPLi st enDesc;
NWWQuadr upl et NWMUDPConnDesc;

} NWMCut put Dat aDescri pt ors; /* Qutput section descriptors
(out put)
} NWWHeader ; /* NWVHeader
Filter Element
typedef struct {
NVWM_ui nt NWVFi | terl dent; /* ldentifier
#defi ne NWWFI LTERI DENTI FI ER OxD5SE6DA4C6 /* EyeCat cher " NWWF"
NVWM _ui nt NWVFi | t er Fl ags; /[* Bit flags indicating the

ns included in the filter
Resource nane incl uded
Resource I D incl uded
Local address included

t
e
#def i ne NWWVFI LTERRESNAMEMASK 0x80000000 / *
*
* Local port included
*
*
*
*

/
#defi ne NWWFI LTERRESI DMASK ~ 0x40000000 /
#defi ne NWWFI LTERLCLADDRMASK 0x20000000 /
#defi ne NWWFI LTERLCLPORTMASK 0x10000000 /
#defi ne NWWFI LTERLCLPFXMASK 0x08000000 /* Local prefix included
/* Renote address included
/* Renmpte port included
/* Renote prefix included
[* ASID incl uded
/* Listening server
resource | D included
char NWWFi | t er ResourceNane. 8.; /* Resource name
/* Al non-blank characters after a * wildcard are ignored
NVWM _ui nt NWVFi | t er Resourceld; /* Resource ID
NWM _ui nt NWVFi | terListenerld; /* Listener resource ID

#defi ne NWWFI LTERRMIADDRVASK 0x04000000
#def i ne NWWFI LTERRMIPORTMASK 0x02000000
#def i ne NWWFI LTERRMIPFXVASK 0x01000000
#def i ne NWVFI LTERASI DIVASK 0x00800000
#defi ne NWWFI LTERLSRESI DIVASK 0x00400000

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

*/

*/
*/

*/

*/
*/
*/

*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

51

uni on {
struct sockaddr _in

NWVFi | t er Local Addr 4;

/* AF_INET address and port

(sin_fam | y=AF_| NET) */
struct sockaddr _in6 NWWFi | terlLocal Addr 6;
[* AF_I NET6 address, port and
scope
(sin6_fam | y=AF_| NET6) */
} NWWFi | terlLocal; /* Local Address Filter */
uni on {
struct sockaddr _in NWFilterRenpt eAddr 4;
/* AF_INET address and port
(sin_fam|y=AF_I NET) */
struct sockaddr i n6 NWWFi | t er Renot eAddr 6;
/* AF_INET6 address, port and
scope
(sin6_fam | y=AF_| NET6) */
} NWWFi | t er Renot e; /* Renote Address Filter */
NWM ushort NWWFi | terLocal Prefix; /* Local Address prefix nunber */
NWM ushort NWFi | ter RenotePrefix;/* Renote Address prefix nunber */
NWM ushort NWFi | t er Asi d; /* ASID */
char NWWFi | t er Rsvd01[42]; /* Reserved */
} NWFilter;
The following table displays which filter element fields contain filter item data.
Data item Filter item
NWMFilterResourceName Resource name
NWMFilterResourceld Resource ID
NWMFilterListenerld Server resource 1D
NWMFilterLocal Local IP address and local port
NWMFilterRemote Remote IP address and remote port
NWMFilterLocalPrefix Local IP address prefix
NWMFilterRemotePrefix Remote IP address prefix
NWMFilterAsid ASID
TCP Connection Element
typedef struct {
NVWM_ui nt NWMConnl dent ; /* ldentifier */
#defi ne NWMITCPCONNI DENTI FI ER ~ OxD5E6D4C3 /* EyeCat cher " NWLC */
uni on {
struct sockaddr _in NWConnLocal Addr 4;
/* AF_I NET address */
struct sockaddr i n6 NWMConnLocal Addr 6;
/* AF_I NET6 address */
} NWMConnLocal ; /* Local Address */
uni on {
struct sockaddr _in NWConnRenot eAddr 4;
/* AF_I NET address */
struct sockaddr i n6 NVWMConnRenot eAddr 6;
[* AF_I NET6 address */
} NWMConnRenot e; /* Renote Address */
NV ul | NVWMConnSt ar t Ti ne; /* Connection start tinme */
NV _ul | NWWConnLast Activity; /* Last tinme of connection
activity */
NV _ul | NVWMConnByt esl n; /* Bytes received */
NV ul | NVWMConnByt esCut ; /* Bytes sent */

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp

52

NV ul | NVWWMConnl nSegs; /* Segnents received */

N _ul | NVWMConnCQut Segs; /* Segnments sent */

NVWM ushort NWMConnSt at e; [* State of the TCP Connection */
#defi ne NWMICPSTATEKLOSED
#def i ne NWMITCPSTATELI STEN
#def i ne NWMICPSTATESYNSENT
#def i ne NWMTCPSTATESYNRCVD
#defi ne NWMICPSTATEESTAB
#def i ne NWMITCPSTATEFI NWAI T1
#def i ne NWMITCPSTATEFI NWAI T2
#defi ne NWMITCPSTATECLOSWAI T
#defi ne NWMITCPSTATELASTACK
#defi ne NWMTCPSTATECLCSI NG 10
#def i ne NWMITCPSTATETI MEWAI T 11
#def i ne NWMITCPSTATEDELETTCB 12

NWM uchar NWMConnAct i veQpen; /* 0->Passi ve open (renote end

i ssued connect())
1->Active open (local end

CoOo~NOUWNE

i ssued connect()) */
NVWM uchar NWMConnRsvdO1; /* Reserved */
NWM_ui nt NVWWMConnCQut Buf f er ed,; /* Nunber output bytes buffered */
NWM_ui nt NVWMConnl nBuf f er ed; /* Nunber incom ng bytes buffered*/
NVWM _ui nt NVWWConnMax SndWhd; /* Max send w ndow size */
NWM_ui nt NVWWConnReXnt Count ; /* Nunber retransmitted segnents */
NWM_ui nt NWMConnCongest i onWwhd; /* Congestion wi ndow si ze */
NWM ui nt NWMConnSSThr esh; /* Slowstart threshold */
NVWM _ui nt NVWMConnRoundTri pTine; /* RTT average */
NV _ui nt NVWMConnRoundTri pVar; [/* RTT variance */
NWM_ui nt NVWMConnSendMsS; /* Max send segment size */
NWM _ui nt NWMConnSndWhd; /* Send wi ndow */
NWM _ui nt NVWMConnRcvBuf Si ze; /* Receive buffer size */
NV _ui nt NVWWMConnSndBuf Si ze; /* Send buffer size */
NWM_ui nt NWMConnQut Of Or der Count; /* Number out-of -order segnents
recei ved */
NVWM _ui nt NVWMConnLcl OW ndowCount; /* Nunber of tines |oca
wi ndow si ze set to O */
NWM_ui nt NVWMConnRnt OW ndowCount; /* Nunber of times renote
wi ndow si ze set to O */
NVWM _ui nt NVWMConnDupacks; /* Nunber of duplicate ACKs
recei ved */
NVWM ushort MANConnRsvd02; /* Reserved */
NVWM ushort MANConnAsi d; /* ASID of address space
t hat opened connection */
char NWWMConnResour ceNane. 8.; /* Jobnane of address space
t hat opened connection */
NWM ui nt NWMConnResour cel d; /* TCP/I P connection ID */
NVWM _ui nt NVWMConnSubt ask; /* Address of TCB in address space
t hat opened connection */
NV uchar NWMConnSockOpt ; /* Socket options */
#def i ne NWMConnSOCKOPT_SO REUSERADDR 0x80 /* SO _REUSERADDR */
#def i ne NWWConnSOCKOPT_SO COBONLI NE 0x40 /* SO_OOBONLI NE */
#defi ne NWMConnSOCKOPT_SO LI NGER 0x20 /* SO_LI NGER */
#defi ne NWMConnSOCKOPT_T_MSGDONTROUTE 0x10 /* T_MSG_DONTROUTE */
#defi ne N\WConnSOCKOPT_NO DELAY 0x08 /* No delay (Nagle off) */
#def i ne NWMConnSOCKOPT_SO KEEPALI VE 0x04 /* SO _KEEPALI VE */

#defi ne NVWWConnSOCKOPT_TIM NG LI NGER 0x02 /* Current timng |linger */
#def i ne NV\WConnSOCKOPT_TI M NG _KEEPALI 0x01 /* Current timng keep ali*/

NVWM uchar NWWMConnSockOpt 6; /* */
#defi ne NWMConnSOCKOPT_UNI CAST _HOPS 0x80 /* Uni cast Hops set */
#def i ne NVWConnSOCKOPT_USEM NMIu 0x40 /* UseM nMu set */
#def i ne NWMConnSOCKOPT_RCVHOPLI M 0x20 /* RcvHopLi m set */
#def i ne NWMConnSOCKOPT_V6ONLY 0x10 /* v6Only sock opt */

NWM uchar NWMConnCl ust er ConnFl ag; /* Syspl ex socket flags */
#defi ne NVWMConnl NTERNALCLUSTER 0x08 /* Internal */

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

#def i ne NWMConnSAMEI MAGE

#defi ne NVWConnSAMECLUSTER
#defi ne NVWConnNOCLUSTER
NWWMConnPr ot o;
#def i ne NWMConnPROTO _TN3270E
#defi ne NVWWConnPROTO TN3270
#defi ne NVWConnPROTO LI NE_MODE

NVWM uchar

0x04 /* Same inmage */

0x02 /* Sanme cluster */
0x01 /* None * [

/* 0=Non- TELNET connecti on */
0x04 /* TN3270E node */
0x02 /* TN3270 node */
0x01 /* Line node */

char NWWMConnTar get Appl [8] ; /* TELNET target application nanme*/
char NVWMConnLuNane[8] ; /* TELNET LU nane */
char NWWMConnCl i ent User 1 d[8]; /* TELNET user client nane */
char NWWConnLoghbdel 8] ;]1/* TELNET LOGMODE nane */
NV _ui nt NWWMConnTi meSt anp; /* Most recent timestanp from
part ner */
NWM_ui nt NWMConnTi meSt anpAge; /* \When nost recent timnestanp
from partner was updated */
NV _ui nt NWWMConnSer ver Resourcel d; /* Resource ID of related
| oad- bal anci ng server */
char NWWVConnl nt f Name[16] ; /* Interface nane */

} NWMConnEnt ry;

The following table displays the data returned in TCP connection element fields.

Data Item Description

NWMConnLocal The local IP address and port, in sockaddr format, for this TCP connection.

NWMConnRemote The remote IP address and port, in sockaddr format, for this TCP
connection.

NWMConnStartTime The time, in MVS TOD clock format, when this connection was started.

NWMConnLastActivity The time, in MVS TOD clock format, of the last activity on this
connection.

NWMConnBytesIn The number of bytes received from IP for this connection.

NWMConnBytesOut The number of bytes sent to IP for this connection.

NWMConnlnSegs The number of segments received from IP for this connection.

NWMConnOutSegs The number of segments sent to IP for this connection.

NWMConnState The state of the TCP Connection:

- 3=Syn sent

- 4=Syn received
- 5=Established
- 6=FIN wait 1

- 7=FIN wait 2

- 8=Close wait

- 9=Last Ack

- 10=Closing

NWMConnActiveOpen Type of open performed:

- 0=Passive open (remote end initiated the connection)
- 1=Active open (local end initiated the connection)

NWMConnOutBuffered Number of outgoing bytes buffered.

NWMConnlnBuffered Number of incoming bytes buffered.

NWMConnMaxSndWnd Maximum send window size.

NWMConnReXmtCount Number of times segments have been retransmitted.

NWMConnCongestionWnd Congestion window size.

NWMConnSSThresh Slow start threshold.

NWMConnRoundTripTime The amount of time that has elapsed, in milliseconds, from when the last
TCP segment was transmitted by the TCP Stack until the ACK was
received.

NWMConnRoundTripVar Round trip time variance.

NWMConnSendMSS Maximum Segment Size we can send.

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp

54

NWMConnSndWnd

Send Window size.

NWMConnRcvBufSize

Receive buffer size.

NWMConnOutOfOrderCount

The number of out-of-order segments received.

NWMConnLclOWindowCount

The number of times local window size closed to 0.

NWMConnRmtOWindowCount

The number of times remote window size closed to 0.

NWMConnDupacks

Number of duplicate ACKs received for this connection.

NWMConnAsid

The MVS Address space ID of the address space that opened the socket..

NWMConnResourceName

Resource Name is the text identification of this resource. It represents the
user who opened the socket and is updated again during the bind
processing.

NWMConnResourcelD

Resource ID is the numeric identification of this resource. This value is
also known as the connection ID.

NWMConnSubtask

The address of the TCB in the address space that opened the socket.

NWMConnSockOpt

Socket option flags:

-bit(1) = SO_REUSEADDR option
-bit(2) = SO_OOBINLINE option
-bit(3) = SO_LINGER option

-bit(4) =T MSGDONTROUTE
-bit(5) = No delay (Nagle off) option
-bit(6) = SO_Keepalive option
-bit(7) = Currently timing linger
-bit(8) = Currently timing keep alive

NWMConnSockOpt6

Socket option flags:
-bit(1) = Unicast Hops set
-bit(2) = UseMinMtu set
-bit(3) = RcvHopLim set
-bit(4) = v60nly

NWMConnClusterConnFlag

This flag contains sysplex cluster connection types for this connection:
-bit(1) = getsockopt(clusterconntype) requested

-bit(2 - 4) = <reserved>

-bit(5) = cluster internal

-bit(6) = same image

-bit(7) = same cluster

-bit(8) = none

NWMConnProto

This flag will indicates the following Telnet modes:
-bit(1 - 5) = <reserved>

-bit(6) = TN3270E mode

-bit(7) = TN3270 mode

-bit(8) = line mode

NWMConnTargetAppl

The Target VTAM Application name if the TCP connection is for a
TN3720 or TN3270E session.

NWMConnLuName

The VTAM LU name if the TCP connection is for a TN3270 or TN3270E
session.

NWMConnClientUserld

The Client's userid if the TCP connection is for a TN3720 or TN3270E
session.

NWMConnLogMode

The VTAM Logmode if the TCP connection is for a TN3270 or TN3270E
session.

NWMConnTimeStamp

Most recent timestamp value, in milliseconds, received from the remote
side of the connection.

NWMConnTimeStampAge

Time, in milliseconds, when most recent timestamp from partner was
updated.

NWMConnServerResourceld

The numeric identification of the server (i.e., listener connection)
associated with this client connection, if any.

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp

55

I NWMConnIntfName

|Name of the interface over which the last outbound segment was sent. I

TCP Listener Element

typedef struct {

NV _ui nt NWMTCPLI dent ; [* ldentifier */
#def i ne NWMICPLI STENI DENTI FI ER OxD5E6D4E3 /* EyeCat cher " NWMT" */
uni on {
struct sockaddr _in NWICPLLocal Addr 4;
/* AF_I NET address */
struct sockaddr i n6 NWMICPLLocal Addr 6;

/* AF_I NET6 address */
} NWMICPLLocal ; /* Local Address */
NVWM ushort NWWTCPLRsvdO1; /* Reserved */
NVWM ushort NWJTCPLASI d; /* ASID */
char NWMTCPLResour ceNane. 8.; /* Resource nhane */
NV _ui nt NWMTCPLResour cel D; /* Resource ID */
NVWM_ui nt NVWMTCPLSubt ask; /* Address of TCB in address space
t hat opened connection */
NWM_ui nt NWMTCPLAccept Count ; /* Nunber connections accepted */
NVWM _ui nt NWMICPLExceedBackl og; /* Nunmber connections dropped */
NVWM_ui nt NWMTCPLCur r Backl og; /* Current connections in backl og*/
NM _ui nt NVWMTCPLMaxBack! og; /* Max backl ogs al |l owed */
NWM ui nt NWMICPLCur r Act i ve; /* Nunber of current connections */
NV ul | NWMTCPLSt art Ti ne; /* Listener start tine */
N _ul | NWMICPLLast Activity; /* Last time connection processed*/

NV _ul | NWMTCPLLast Rej ect ; /* Last tine connection rejected

due to backl og exceeded */

} NWMICPLi st enEntry

The following table displays the data returned in TCP Listener element fields.

Data Item Description

NWMTCPLLocal The local IP address and port, in sockaddr format, for this TCP connection. In the
case of a listener which is willing to accept connections for any IP interface
associated with the node, an IP address of INADDR_ANY or INGADDR_ANY is
used.

NWMTCPLAsid The MVS Address space ID of the address space that opened the socket..

NWMTCPLResourceName | Resource Name is the text identification of this resource. It represents the user
who opened the socket and is updated again during the bind processing.

NWMTCPLResourcelD Resource ID is the numeric identification of this resource. This value is also
known as the connection ID.

NWMTCPLSubtask The address of the TCB in the address space that opened the socket.

NWMTCPLAcceptCount The total number of connections accepted by this listener.

NWMTCPLExceedBacklog | The total number of connections dropped by this listener due to backlog
exceeded.

NWMTCPLCurrBacklog The current number of connections in backlog.

NWMTCPLMaxBacklog The maximum number of connections allowed in backlog at one time.

NWMTCPLCurrActive The number of current connections.

NWMTCPLStartTime The time, in MVS TOD clock format, that the listener started.

NWMTCPLLastActivity The time, in MVS TOD clock format, that a connection was last processed.

NWMTCPLLastReject The time, in MVS TOD clock format, that a connection was last rejected due to
backlog exceeded.

UDP Connection Element

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp 56

typedef struct {

NVWM _ui nt NWMUDPCI dent ; [* ldentifier
#defi ne NWWMUDPCONNI DENTI FI ER ~ OxD5E6D4E4 /* EyeCat cher "N
uni on {
struct sockaddr_in NWUDPCLocal Addr 4;

/* AF | NET address

struct sockaddr i n6 NWMUDPCLocal Addr 6;
/* AF_INET6 address
} NWMUDPCLocal ; /* Local Address
uni on {
struct sockaddr_in NWUDPCRenot eAddr 4;

/* AF_| NET address

struct sockaddr i n6 NVWMJUDPCRenot eAddr 6;
/* AF_|I NET6 address
} NWMUDPCRenot €; /* Renote Address
N _ul | NVWWMUDPCSt ar t Ti ne; /* Connection start tinme
N _ul | NWMUDPCLast Activity; /* Last time of connection
activity
NV _ul | NWWUDPCDgr am n; /* Nunber datagrans received
NV _ul | NVWWUDPCBYt esl n; /* Number byptes received
N _ul | NVWMUDPCDgr amQut ; /* Nunber datagrans sent
NV _ul | NVWMUDPCByt esCut ; /* Number byptes sent
NWM ushort NWWMIDPCRsvdO1; /* Reserved
NWM ushort NWUDPCAsI d; /* ASID
char NWWUDPCResour ceNane[8] ; /* Resource nhane
NWM ui nt NWMUDPCResour cel d; /* Resource ldentifier
NWM _ui nt NWWUDPCSubt ask; /* Hexadeci mal subtask numnber

NVWM uchar NWWUDPCSockOpt ;

/* Socket options

#defi ne NVWUDPCSOCKOPT_BROADCAST 0x80 /* All ow broadcast
#def i ne N\WUDPCSOCKOPT_LOOPBACK 0x40 /* Al'l ow | oopback
#def i ne NVWMUDPCSOCKOPT_BYPASSRTE 0x20 /* Bypass Normal Routing
#def i ne NVWWMUDPCSOCKOPT_| CVPFWD 0x10 /* Forward | CMP (PASCAL)
#def i ne NVWUDPCSOCKOPT_SENDMULTI 0x08 /* All ow outgoing nulticast
#def i ne NVWMUDPCSOCKOPT_RECVMULTI 0x04 /* Allow incomng nulticast
NWM uchar NWMUDPC6SockOpt 1; /* Socket optionl

#defi ne NWMUDPC6SOCKOPT1_AF_| NET6 Ox80 /* AF_INET6 fanmily
#defi ne NWMUDPCESOCKOPT1_V6ONLY 0x40 /* 1 PV6_VBONLY
#def i ne NWMUDPC6SOCKOPT1_RCVPKT 0x20 /* | PV6_RECVPKTI NFO
#def i ne NWMUDPC6SOCKOPT1_RCVHOP 0x10 /* |1 PV6_RECVHOPLIM T
#def i ne NVWUDPC6SOCKOPT1_M NMTU 0x08 /* |1 PV6_USE_M N_MrU
#defi ne NWMUDPCESOCKOPT1_SENDPKTADDR 0x04 /* | PV6_PKTI NFO src | P@
#def i ne NWMUDPCE6SOCKOPT1_SENDPKTI NTF 0x02 /* | PV6_PKTI NFO Pl F i ndex
#def i ne NWUDPC6SOCKOPT1_HOPLIM T 0x01 /* |1 PV6_UN CAST_HOPS

NVWM uchar NWWMUDPC6Sock Opt 2; /* Socket option2
#defi ne NWMUDPC6SOCKOPT1_USEM NMIU 0x80 /* | PV6_USE_M N_MrU

NVWM uchar NWMUDPCRsvd02; /* Reserved

NVWM _ui nt NVWWMUDPCSendLi m /* Send limt

NVM _ui nt NVWWUDPCRecvLi m /* Receive Limt

NWM_ui nt NVWMUDPCReadQueueCount ; /* Nunber of datagrans on

read queue

NVWM _ui nt NVWMUDPCReadQueueByt eCount ; /* Nunmber of data bytes

read queue

NWM_ui nt NVWMUDPCReadQueuelLi mi t; /* Maxi mum nunber of

dat agrans al | owed on
read queue

NWM_ui nt NVMUDPCReadQueueByt eLi mit; /* Maxi num nunber of

data bytes allowed on
read queue

NWM _ui nt NWWUDPCReadQueuelLi m t Di scards; /* Nunber of datagrans

di scarded due to
queue limts

} NWWMUDPConnEnt ry;

The following table displays the data returned in UDP connection element fields.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

*/
*/

*/

*/
*/

*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

*/

*/

57

Data Item Description

NWMUDPCLocal The local IP address and port, in sockaddr format, for this UDP
connection.

NWMUDPCRemote The remote IP address and port in sockaddr format, for this UDP
connection. If no connect() was done, this sockaddr will contain all
ZEroes.

NWMUDPCStartTime The time, in MVS TOD clock format, when this connection was
started.

NWMUDPCLastActivity The time, in MVS TOD clock format, of the last activity on this
connection.

NWMUDPCDgramIn Number of received datagrams.

NWMUDPCBytesIn Number of bytes received.

NWMUDPCDgramOut Number of sent datagrams.

NWMUDPCBytesOut Number of bytes sent.

NWMUDPCAsid The MVS Address space ID of the address space that opened the
socket.

NWMUDPCResourceName Resource Name is the text identification of this resource. It represents
the user who opened the socket and is updated again during the bind
processing.

NWMUDPCResourcelD Resource ID is the numeric identification of this resource. This value
is also known as the connection ID.

NWMUDPCSubtask The address of the TCB in the address space that opened the socket.

NWMUDPCSockOpt IPv4 UDP Socket options:

-bit(1) = allow broadcast address

-bit(2) = allow loopback of datagrams

-bit(3) = bypass normal routing

-bit(4) = forward ICMP message (Pascal)

-bit(5) = outgoing multicast datagrams

-bit(6) = incoming multicast datagrams

-bit(7) = <reserved>

-bit(8) = <reserved>
NWMUDPC6SockOptl IPv6 UDP Socket options:

-bit(1) = AF_INET6 family

-bit(2) =IPV6_V60ONLY

-bit(3) =IPV6_RCVPKT

-bit(4) =1IPV6_RCVHOP

-bit(5) =IPV6_MINMTU

-bit(6) = IPV6_SENDPKTADDR

-bit(7) = IPV6_SENDPKTINTF

-bit(8) =1PV6 HOPLIMIT

NWMUDPC6SockOpt2 IPv6 UDP Socket Options:

-bit(1) = IPv6 Use minimum MTU

NWMUDPCSendLim Maximum transmit datagram size.

NWMUDPCRecvLim Maximum received datagram size.

NWMUDPCReadQueueCount Number of datagrams on read queue.

NWMUDPCReadQueueByteCount Number of data bytes on read queue.

NWMUDPCReadQueueLimit Maximum number of datagrams allowed on read queue.

NWMUDPCReadQueueByteLimit Maximum number of data bytes allowed on read queue.

NWMUDPCReadQueueLimitDiscards | Number of datagrams discarded due to queue limits.

2003/10/30 15:09:18 V1RS5 Network Mgmt User's Guide.lwp

58

TCP/IP Storage Statistics Element

typedef struct {

NV _ui nt NVWVEBt gl dent ; /[* ldentifier */
#defi ne NWVBTORAGESTATSI DENTI FI ER OxD5E6D4E2 /* EyeCatcher "NWB' */
NWM _ui nt NVWWVBt gRsvdO01; /* Reserved */
NV ul | NVWWVBt gECSACur r ent ; /* Current nunber of ECSA storage
bytes al |l ocat ed */
N _ul | NSt gECSAMBX; /* Maxi mum nunber of ECSA storage
bytes all ocated since the
TCP/ I P stack was started */
N ul | NVWWVBt gECSALI mi t ; /* Maxi mum nunber of ECSA storage

bytes all owed as specified on
the GLOBALCONFI G statenent in
the TCP/IP profile

A val ue of zero indicates that

there is no lint */
NV _ul | NWVBt gPri vateCurrent; /* Current nunber of authorized

private subpool storage bytes

al l ocated */
N _ul | NSt gPr i vat eMax; /* Maxi mum nunber of authorized

private subpool storage bytes
all ocated since the TCP/IP
stack was started */
N _ul | NWVSt gPri vateLimt; /* Maxi mum nunber of authorized
private subpool storage bytes

al l owed as specified on the

GLOBALCONFI G statenment in the

TCP/IP.profile. A value of zero

i ndicates that there is no

[imt */
} NWWBt gSt at Ent ry;

The following table displays the data returned in TC/IP storage statistics element fields.

Data Item Description

NWMStgECSACurrent Current number of ECSA storage bytes allocated.

NWMStgECSAMax Maximum number of ECSA storage bytes allocated since the TCP/IP stack
was started.

NWMStgECSALimit Maximum number of ECSA storage bytes allowed as specified on the

GLOBALCONFIG statement in the TCP/IP profile. A value of zero indicates that
there is no limit.

NWMStgPrivateCurrent Current number of authorized private subpool storage bytes allocated.

NWMStgPrivateMax Maximum number of authorized private subpool storage bytes allocated
since the TCP/IP stack was started.

NWMStgPrivateLimit Maximum number of authorized private subpool storage bytes allowed as

specified on the GLOBALCONFIG statement in the TCP/IP.profile. A
value of zero indicates that there is no limit.

The header file and macro are described in the following table:

‘ Header file for C/C++ ‘ Macros for ‘ Contents

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 59

programs Assembler programs

EZBNMRHC EZBNMRHA The NMI request and response data
structure definitions.

These header files and macros are shipped in the hlq.SEZANMAC data set (hlq refers to the high

level qualifier used when the product was installed on your system). This data set must be
available in the concatenation when compiling or assembling a part that makes use of these

definitions.

Example

The following C/C++ code fragment shows how to format a request to obtain TCP connection

information using the filters in the Filter definition example (which starts on page 48):

/**/

[* */
/* NM data definitions * [
/* */

/**/

typedef struct {
NWWHeader NM header ;
NWFilter NMfilter[2];

} NM buftype;

NM buftype *NM buf f er;

unsigned int NM al et;

int NM I ength;

int RV,

i nt RC

unsi gned int RSN,

#defi ne NM BUFSI| ZE 8192
NM buf f er =mal | oc(NM BUFSI ZE) ;
NM al et =0;

NM | engt h=NM BUFSI ZE;

/**/

/* */
/* Format the header */
/* */

/**/

NM buf f er - >NM header . N\WHeader | dent =NWWHEADERI DENTI Fl ER;
NM buf f er - >NM header . N\WHeader Lengt h=si zeof (N\WHeader) ;
NM buf f er - >NM header . N\WWer si on=NWWERSI ON1;
NM buf f er - >NM header . NWMTy pe=NWMICPCONNT YPE;
NM buf f er - >NM header . N\WByt esNeeded=0;
NM buf f er - >NM header . N\M nput Dat aDescri ptors. \
NWVFi | t er sDesc. NMWMTCY f set =si zeof (N\\WHeader) ;
NM buf f er - >NM header . N\M nput Dat aDescri ptors. \
NWVFi | t er sDesc. NMMTLengt h=si zeof (NWWFi | ter);
NM buf f er - >NM header . N\M nput Dat aDescri ptors. \
NWVFi | t er sDesc. NWMTNunber =2;

/**/

/* */
/* Format filter 1 */
/* */

/**/

NM buffer->NMfilter[1]. NWFi | t er| dent =NWFI LTERI DENTI Fl ER;
NM buf fer->NM filter[1]. NWFi | t er Fl ags=NWWFI LTERLCLADDRMASK] \
NI LTERL CLPORTMASK;

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

60

NM buffer->NMfilter[1]. NWWFi | terLocal .\
NWVFi | t er Local Addr 4. si n_famni | y=AF_| NET;
NM buffer->NMfilter[1]. NWWFilterLocal .\
NWVFi | t er Local Addr 4. si n_port =5000;
NM buffer->NMfilter[1]. NWWFi |l terLocal .\
NWVFi | t er Local Addr 4. si n_addr. s_addr=0x09000001;

/**/

/* */
/* Format filter 2 * [
[* */

/**/

NM buffer->NMfilter[2]. NWFi | terl dent =NWWFI LTERI DENTI FI ER;
NM buffer->NMfilter[2]. NWFilterFl ags=NWFI LTERRESNAMVEMASK;
NM buffer->NMfilter[2]. NWMFi | t er Resour ceNanme="FTP*

mencpy(NM buffer->NMfilter[2]. NWFi | t er Resour ceNane, " FTP* ", 8);

/**/
/* */
/* Invoke NM service */
/* */

/**/

EZBNM FR(Tcpi pJobNane, NM buf f er, &\M al et , &\M | engt h, &RV, &RC, &RSN) ;

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

61

Chapter S - Application interface for SNA network
monitoring data

z/OS Communications Server VTAM provides a single AF_UNIX socket interface for allowing network
management applications to obtain the following types of data:

* Enterprise Extender (EE) connection data: information about all EE connections or a desired
set of EE connections as specified by the application using the local IP address or hostname
and/or the remote [P address or hostname.

* Enterprise Extender summary data: information comprising a summary of EE activity for this
host.

* High Performance Routing (HPR) connection data: information about specific HPR
connections Rapid Transport Protocol physical units (RTP PUs) as specified by the
application using either 1) the RTP PU name, or 2) the RTP partner CP name with an
optional APPN COS specification. These RTP PUs are not limited to those using EE

connections.
* Common Storage Manager (CSM) statistics: CSM storage pool statistics and CSM summary
information.
Interface description Supported release

SNA Network Management Interface z/OS VIR4, VIRS

Overview

A client network management application polls for information through specific requests via an
AF UNIX streams socket connection using VTAM as the server for that socket. The requested data is
provided to the application directly via the AF_UNIX streams socket connection.

Configuration

The z/OS system administrator may restrict access to this interface by defining the RACF (or equivalent
external security manager product) resource IST.NETMGMT.sysname.vtamprocname. SNAMGMT in the
SERVAUTH class.

* sysname represents the MVS system name where the interface is being invoked.
* vtamprocname represents the job name associated with the VTAM started task procedure.

For applications that use the interface, the MVS user ID is permitted to the defined resource. If the
resource is not defined, then only superusers (users permitted to BPX.SUPERUSER resource in the
FACILITY class) are permitted to it. If you are developing a feature for a product to be used by other
parties, include instructions in your documentation indicating that either administrators must define and
give appropriate permission to the given security resource to use that feature, or you must run your
program as superuser.

Requirements:
1. The administrator must define an OMVS segment for VTAM if one is not already defined.
2. The VTAM OMVS user ID must have write access to the /var directory.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 62

Enabling and disabling the interface

You can enable the SNA Network Monitoring data interface by setting the VTAM start option
SNAMGMT to YES, and you can disable the interface by setting the VTAM start option SNAMGMT to
NO. The default for this start option is NO, and the start option is modifiable after VTAM is started. This
start option may be specified in any of the following ways:

® Using the START command for VTAM
1. IBM default value is NO
2. Within the supplemental VTAM Start list (ATCSTRxx, if LIST=xx entered) as
SNAMGMT=YES or SNAMGMT=NO
3. START command options entered by operator as SNAMGMT=YES or
SNAMGMT=NO

¢ Using the MODIFY VTAMOPTS command
MODIFY vtamprocname,VTAMOPTS,SNAMGMT=YES
MODIFY vtamprocname,VTAMOPTS,SNAMGMT=NO

The current value of the SNAMGMT start option is displayable using any of the following VTAM
DISPLAY commands:

DISPLAY NET,VTAMOPTS

DISPLAY NET,VTAMOPTS,OPTION=SNAMGMT

DISPLAY NET,VTAMOPTS,FUNCTION=VTAMINIT
Connecting to the server

The application wishing to make use of this interface must connect to the AF_UNIX streams socket
provided by the VTAM server for this interface. The socket pathname is /var/sock/SNAMGMT.

Either the LE C/C++ API or the UNIX System Services BPX services may be used to create AF UNIX
sockets and connect to this service.

When an application connects to the socket, the VTAM server will send an Initialization record to the
client application. When VTAM closes a client connection (reasons for doing so include severe errors in
the format of data requests sent by the application to the VTAM server, the disabling of the interface by
the VTAM operator, and VTAM termination), VTAM will attempt to send a termination record to the
client application before closing the connection. Both the Initialization and Termination Records
conform in structure to the solicited response records sent by VTAM to the application (see SNA
Network Management Interface (NMI) Request/Response Format, below).

The initialization record contains the following information:
* VTAM level
* Time and date VTAM was started
¢ Flags indicating functions supported by this VTAM
The termination record contains the following information:
* Return Code

®* Reason Code

SNA Network Management Interface (NMI) Request/Response Format
2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 63

This interface uses a request/response method over the socket. The application will build and send an
NMI request over the socket. The request specifies the type of information to be received and may
contain data filters. The application must issue a receive to get the NMI response over the socket. The
NMI response will provide either 1) data that satisfies the request (matching any input filters specified on
the request), or 2) an error response. A severe formatting error in the application’s NMI request will
result in VTAM sending a termination record and closing the connection.

The SNA Network Management Interface provides the formatted response data directly to the application
over the AF_UNIX socket. This is in contrast to the application interfaces for network monitoring
described in Chapter 2, which return a token to a response buffer that the application must use as
input to the EZBTMICI callable service in order to obtain the formatted response data.

The NMI request and response mappings are provided for programming to this interface.

All SNA NMI requests flow on the socket from the client application to the VTAM server. The general
format of an SNA NMI request is:

® The request header, which includes the request type and the request section descriptors
(tr1p1ets) The following request types can be made:
EE Connection Request - obtain information about some or all Enterprise Extender
connections.
* EE Summary Request - obtain summary information about all Enterprise Extender
connections.
¢ HPR Connection Request - obtain information about one or more HPR connections.
* CSM Statistics Request - obtain information about global CSM statistics.

A triplet consists of the offset (in bytes) of the request section relative to the beginning of
the request header, the number of elements in the request section, and the length of a request
section element.

* The request sections. The only type of request section that can be specified is a filter
element:

* Inan EE Connection Request, either zero or one filter elements can be included. The

set of all EE connections can be selected either by not including a filter element in
the request or by supplying a filter element with no filter parameters specified. A
subset of EE connections can be selected by supplying a filter element that includes
any combination of the filter parameters in the following table. z/OS
Communications Server will not perform name resolution (to an IP address) on any
supplied hostname, but will simply look for connections that were established using
the given hostname.

Restriction: Local Hostname and IPv6 filter parameters are applicable only to z/OS

VI1RS Communications Server and later releases. If the initialization record received by

the client when the connection was opened specifies that Local Hostname and IPv6

addresses are not supported by this VTAM level (any VTAM level prior to z/OS V1RS),
then the server rejects any request that contains a Local Hostname or [Pv6-format
addresses.

Local Hostname An EBCDIC name, right-padded with nulls or blanks if less than 64 characters
long (applicable to CS for z/OS V1RS5 and later releases only). Local Hostname
is ignored if Local IP Address is specified.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 64

Local IP Address

A 32-bit IPv4 address or a 128-bit [Pv6 address.
(IPv6 address is applicable to CS for z/OS V1RS5 and later releases only.)

Remote Hostname

An EBCDIC name, right-padded with nulls or blanks if less than 64 characters
long. Remote Hostname is ignored if Remote IP Address is specified.

Remote IP Address

A 32-bit IPv4 address or a 128-bit [Pv6 address.
(IPv6 address is applicable to CS for z/OS V1RS5 and later releases only).

In an HPR Connection Request, you select a subset of HPR connections based on any

combination of the following items that includes, at a minimum, either the RTP PU Name
or the Partner CP Name (between one and four filter elements may be specified per
request):

RTP PU Name

An EBCDIC name, right-padded with nulls or blanks if less than 8 characters
long.

Partner CP Name A fully-qualified EBCDIC name, right-padded with nulls or blanks if less than
17 characters long. Partner CP Name is ignored if RTP PU Name provided. If a
network identifier is not supplied, the partner CP Name is qualified with the
host’s network ID.

COS Name An EBCDIC name, right-padded with nulls or blanks if less than 8 characters

long. COS is ignored if RTP PU Name provided.

An EE Summary Request is not permitted to contain any Filter Elements. No filters

are applicable to an EE summary request.

A CSM Statistics Request is not permitted to contain any Filter Elements. No filters

are applicable to a CSM statistics request

The following table shows which filter parameters are required, optional, or not applicable (N/A) for

each request type.

If inapplicable filters are specified for a particular request type, an EE Connection

Request or HPR Connection Request, they are ignored. EE Summary Requests or CSM Statistics
Requests containing Filter Elements will be rejected by VTAM.

Request Type Local IP Remote IP RTP PU COS
Address or Hostname Address or name or name
Hostname Partner CP
name
EE Connection Optional, Optional, N/A N/A
Request Local Hostname Remote Hostname
ignored if Local IP | ignored if Remote IP
Address is given Address is given
EE Summary N/A N/A N/A N/A
Request
HPR Connection N/A N/A One is required, | Optional, ignored if
Request Partner CP Name| RTP PU Name
ignored if RTP given
PU Name given

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 65

CSM Statistics N/A
Request

N/A

N/A

N/A

Conceptually, every valid request record sent to VTAM by the client will look like this:

General Request format structure:

Common Request/Response Header

Input Triplet information - a single triplet is defined
* Offset from start of request header to first input section
* Length of each input section of this type
* Number of input sections of this type

Start of input information (offset from start of request header to this data given in Input Triplet)

The C/C++ data structure definitions for SNA NMI Requests are contained in the ISTEEHNC header file,
and are shown below. The assembler mappings for these structures are in ISTEEHNA.

Request/Response Header

/***/

/*

/* Overall EE/ HPR Network Managenent

/* Header Mappi ng.
/*

Interface Request and Response

/* This header is provided in every EEf HPR NM

/

request fromthe

/* application client, and on every EEf HPR NM response from VIAM
*

*/
*/
*/
*/
*/
*/
*/

/***/

t ypedef struct {

unsi gned i nt EEHNVHeader | dent ;
unsi gned int EEHNVHeader Lengt h;

unsi gned short EEHNWer si on;
unsi gned short EEHNMIype;

/* Header EyeCatcher: "EEHH'

/*
/*
/*

char EEHMNCor r el at or[16] ;

unsi gned i nt EEHNMC i ent | D

unsi gned int EEHNMRet ur nCode;
unsi gned int EEHNVReasonCode;

unsi gned i nt EEHNMRecor dLengt h;

/*

/*
/*
/*

unsi gned | ong | ong EEHNMTi nest anp; /*

char EEHNVRsvd1[16] ;

/*

(required input/output)
Record Header
i nput/ out put)

@xc:/
Length (required

/

EE/ HPR Networ k Mbnitor Version

(required input/output)

EE/ HPR Net wor k Moni tor Type

(required input/output)

/* Request/response correl ator
supplied by client on

requ

est and returned by

VTAM on the response

I nt er nal
for requ

server identifier
esting client

Errno val ue (out put)
ErrnoJdr val ue (output)

Over al |
request

dat a was
Format i
is GWII (
Reser ved

EEHNMTT i pl et EEHNM nput Dat aDescri ptors; /*

EEHNMTT i pl et EEHNMRsvd2;

/*

Reser ved

EEHNMQuadr upl et EEHNMOut put Dat aDescri pt or s;

2003/10/30 15:09:18

| ength of the input

*/
*/

and/ or out put response
(required input/output)
Ti mest anp when | ast piece of

col l ected (output).
s STCK val ue, tine
not |ocal).

| nput section
(filter) descriptors

/* Qutput section
descriptors

VIRS Network Mgmt User's Guide.lwp

*/

66

EEHNMQuadr upl et EEHNMRsvd3; /* Reserved */
} EEHNVHeader ;
Triplets
/***/

/* Overall Record Triplet mapping, used for input data */

/***/

typedef struct {

unsi gned int EEHNMTCY f set ; /* Ohfset to start of first
section of this type */

unsi gned short EEHNMILengt h; /* Length of this section */

unsi gned short EEHNMINunber ; /* Nunber of instances of this
section */

} EEHNMITI pl et;

/***/

/* Internal Record Triplet mapping */
/*************)\-***/

typedef struct {

unsi gned int EEHNM RTOf f set ; /* Ofset fromthe start of the
record to the first section of
this particular type */

unsi gned short EEHNM RTLengt h; /* Length of each section of this
particul ar type */

unsi gned short EEHNM RTNunber ; /* Nunber of instances of this
particul ar type of section */

} EEHNVRecordTri pl et ;

Quadruplet

/***/

/* Overall Record Quadrupl et nmapping, used for output data */

/***/

typedef struct {

unsi gned int EEHNMQO f set ; /* OFfset to start of first
record data within the
response. Subsequent records
are found using the | ength of
the record being processed */

unsi gned i nt EEHNMOQRsvd1; /* Reserved for EE/HPR NM
responses, since the length
of the records are variable

within the response data */
unsi gned i nt EEHNMXNunber ; /* Nunber of records returned
on this response. |If less than

EEHNMQVat ch, then server is
unable to return all of the
record el enents that matched
the filters due to VIAM st or age
constrai nts. */
unsi gned int EEHNMQVAL ch; /* Nunber of record el enents
that matched the filters. */
} EEHNMQuadr upl et ;

Filter Element
2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

67

**/

EE/ HPR Net wor k Managenent

Interface Request Filter Mapping

The client application includes these filters ("pointed" to by

the input triplet construct) on EE/ HPR NM

request.

The server w ||

if any filter

set the bit EEHNVFi | ter

requests to indicate
The valid filters are request-specific.

_FilterCheck on out put

paranmeters were included that were inapplicable
to the request type and thus were ignored by the server.

/*
/*
/*
/*
/*
/*
/* what specific information the server should return for this
"
/*
/*
/*
/*
/*

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

**/

t ypedef struct {

unsi gned int EEHNMFi |l ter_Eye;

struct {
unsi gned int EEHNMFi | ter Locl PF
unsi gned int EEHNVFi | ter Rem PF
unsi gned int EEHNMFi | ter | Pv6F
unsi gned int EEHNMFi |t er LocHNF
unsi gned int EEHNVFi | t er _RermHNF
unsi gned int EEHNVFi | t er RTPPUF
unsigned int EEHNMFilter_PrtrCPF
unsi gned int EEHNVFi | t er COSF
unsi gned int EEHNMFi | ter Rsvdl
unsigned int EEHNMFi | ter

} EEHNMFi | t er

_Fl ags;

/* Fllter flags

N
o Y
Y
N
o Y
N
R

1; /*
123; /%

“FilterCheck :1; /*

Local | P Address
i ncl uded
Renpte | P Address
i ncl uded
| P Address(es) in
| Pv6 fornmt:
0 | Pv4 format
1 | Pv6 format
Local Host name
i ncl uded
Renot e Host name
i ncl uded
RTP PU Nane i ncl uded
Part ner CP Nane
i ncl uded
APPN CCS nane
i ncl uded
Reserved (set to 0)
Qut put i ndi cator set

by server if inapplicable
filters were specified on

request.

ignore the inapplicable filt
and return data matching the

The server wl |

valid filters.

ter

/* Filter Eyecatcher (FLTR) @XCt/

*/
*/
*/

*/
*/

*/
*/

*/

*/
*/

*/

/***/

/* Following is the specific filter data

For EE Summary requests,

For EE Connection requests,
filters:

| P address or

For HPR Connection requests,
and COS is optiona

/*

/*

/*

/*

/* Opt i onal

/* Local

/*

/*

/*

/* is required
/* al so specified.
/*

uni on {

struct in6_addr EEHNVFi | ter

struct {

2003/10/30 15:09:18

no filters are expected.

host name
Renote | P address or host name

RTP PU nane or
when partner nane is

_Locl Pv6_ADDR, /*

no filters are required.

part ner nane

Local |Pv6 address

VIRS Network Mgmt User's Guide.lwp

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

**/

*/

68

char Rsvd[12]; /* Pad */
struct in_addr Address; /* Local |Pv4 address */
} EEHNVFi | ter_Locl Pv4_ADDR;
} EEHNWVFi | ter Loc_ ADDR;

char EEHNMFi [ter_Rsvd2?[12]; /* Reserved for VTAM usage */
uni on {
struct in6_addr EEHNWFilter_Rem Pv6_ADDR; /* Renote |Pv6 address */
struct {
char Rsvd[12] ; /* Pad */
struct in_addr Address; /* Renote | Pv4 address */

EEHNMFi | t er _Rem Pv4_ADDR;
} EEHNVFi | t er _Rem ADDR

char EEHNMFi | ter Rsvd3[12]; /* Reserved for VTAM usage */
unsi gned char EEHNVFi | ter _LocHN Len; /* Hostnanme len in bytes */
char EEHNVFi | t er _LocHNane[64] ; /* Local hostnane */
unsi gned char EEHNVFi | ter _RenHN Len; /* Hostnane len in bytes */
char EEHNVFi | t er _RenmHNane[64] ; /* Renote host nane */
char EEHNMVFi | t er RTPPU 8] ; /* RTP PU nane */
unsi gned char EEHNWFi lter_PrtrCP_Len; /[* CP nane len in bytes */
char EEHNMFi | ter _PrtrCPNane[17]; /* FQ Partner CP Name */
char EEHNMFi | t er _COS[8] ; /* APPN COS nane */

} EEHNWVFi |l ter;

Constants

/***/

/* Eyecatcher constants for EE/ HPR Networ k Managenent data */

/***/

const unsigned int EEHNM I D /* EEfHPR NM record data (EEHH) */
= 0xC5C5C8Cs; [*@RC/
const unsigned int EEHNM FLTR /* EEfFHPR filter record (FLTR) */
= OxC6D3E3D9; [*@RC*/
const unsigned int EEHNMIN T /* EEFHPR init record (NMI) */
= 0xD5D4C9C9; [*@RC/
const unsigned i nt EEHNM TERM /* EEfFHPR termrecord (NMT) */
= OxD5D4C9E3; [*@RC*/

/***/

/* Constant for EEHNM _Conp */

/*********************?***/

const char EEHNM _Conp_Nane[7] /* EE/ HPR network ngmt server */
={ "\xE2'", "\xDb6', "\xCl', '\xD4',
"\ xC7', "\xD4', "\xE3" }; /* SNAMGMI @uc/

/***/

/* Equates for EEHNWersion field */

/***/

const int EEHNWer si onl
const int EEHNMCurrent Version

1; /* Initial EE/ HPR service version*/
1; /* Current EE/ HPR service version*/

/***/

/* Equates for EEHNMIype field */

/***/

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

69

const int EEHNMnitializationType = 1; /[/* Socket conn init data */
const int EEHNMTer nmi nati onType = 2; [/* Socket conn termdata */
const int EEHNMEEConnType = 3; /* EE connection data processing */
const int EEHNMEESumilype = 4; /* EE sunmmary data processing */
const int EEHNVHPRConnType = 5; /* HPR connection data processing*/
const int EEHNMCSMA obal Type = /* CSM GLOBAL Statistical Data

processi ng @ALA*/
/***/
/* M scel | aneous equat es */
/***/
const int EEHNM FNunber M n_EESunm = O; /* M ni mum nunber of

of filter records in a valid

EE Summary Request */
const int EEHNM FNunber M n_EEConn = O; /* M ni mum nunber of

of filter records in a valid

EE Connection Request */
const int EEHNM FNunmber M n_HPRConn = 1; /* M ni mum nunber

of filter records in a valid

HPR Connecti on request */
const int EEHNM FNurmber Max EESumm = 0; /* Maxi mum nunber

of filter records in a valid

EE Sunmary Request */
const int EEHNM FNunber Max_ EEConn = 1; /* Maxi mum nunber

of filter records in a valid

EE Connection Request */
const int EEHNM FNunber Max_HPRConn = 4; /* Maxi mum nunber

of filter records in a valid

HPR Connecti on request */

All SNA NMI responses flow on the socket from the VTAM server to the client application. The general
format of an NMI response is:

® The response header, which includes the response type, the return code and reason code, the
request section descriptors (triplets), and the response section descriptors (quadruplets). A
quadruplet consists of the offset in bytes of the response section relative to the beginning of
the response header, a reserved field, the number of elements in the response section, and the
total number of elements that passed the request filter checks.

* The request sections.

® The response sections.

* Response sections of the following solicited response types will be returned if data is found
that matches the corresponding filtered or unfiltered request (if no matches were found, no
response data sections are returned):

* EE connection information
¢ EE summary information
* HPR connection information
¢ (CSM statistics information
* An initialization record always contains a single response section.
* A termination record does not contain a response section (all information is contained
within the response header).

The NMI response section consists of one or more “records” containing information that passed the
request filter checks.

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 70

The general format of an NMI response section record is:

® The record header, which contains the overall length of the record and one or more “subrecord”
descriptors (triplets). The record triplet consists of the offset in bytes, relative to the start of the
response section record, for the first instance of a given subrecord; the length in bytes of this
particular subrecord; and the total number of instances of this subrecord.

* The subrecord sections associated with this response section record.

An application wishing to navigate an NMI response must use the overall length value in the response

section record to move to the next variable length record. The application should use the response section

record triplet data to navigate within the record itself.
The following response section records are returned for the solicited response types:

1. EE Summary Response

* One EE Summary Global Data Section Record.

* One or more EE Summary IP Address Data Section Records.
2. EE Connection Response

® One or more EE Connection Data Section Records.
3. HPR Connection Response

* One HPR Connection Global Data Section Record.

* One or more HPR Connection Specific Data Section Records.
4. CSM Global Statistics Response

* One CSM Global Pools Section Record.

* One CSM Summary Section Record.

Conceptually, every response record sent by VTAM to the client will look like the format that follows.

General Response format structure:

Common Request/Response Header

Input Triplet information (copied from corresponding request, if any) -- a single triplet is defined
* Offset from start of response data to first input section
* Length of each input section of this type
* Number of input sections of this type

Output Quadruplet information -- a single quadruplet is defined
* Offset from start of response data to first output record
e 0
* Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request (if any), then some data
was not reported due to storage constraints)
* Number of output records matching the filters supplied on corresponding request, if any

Start of input information (copied from corresponding request, if any - offset from start of response
data saved in Input Triplet)

Start of output information (offset from start of response data saved in Output Quadruplet)

Initialization Record
The structure of the initialization record is below.

Enterprise Extender initialization record format:
2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

71

Common Request/Response Header

Input Triplet information (no corresponding input request) -- a single triplet is defined
* Offset from start of response data to first input section
* Length of each input section of this type - 0
* Number of input sections of this type - 0

Output Quadruplet information -- a single quadruplet is defined
* Offset from start of response data to first output record
e 0
e 0
* Number of output records included in this response - 1

Start of output information (offset from start of response data saved in Output Quadruplet),
specifically one:
* Enterprise Extender initialization record

Enterprise Extender initialization record:

Record Identifier (4 chars) --- "NMII"

VTAM Level, from ATCVT (8 bytes)

TOD VTAM Started, from ATCVT (8 bytes)

SNA Network Management Component Name -- "SNAMGMT"

Functions Supported (8 bits)

¢ [Pv6 addresses supported (1 bit)
* 0 =1IPv6 addresses not supported
* 1 =1Pv6 addresses supported

* Local Hostname filter parameter supported (1 bit)
* 0= Local Hostname filter parameter not supported
* 1= Local Hostname filter parameter supported

* Reserved (6 bits) - '000000'B

Reserved (15 bytes) - 0

The C/C++ data structure definitions for the Initialization Response Record are contained in the
ISTEEHNC header file, and are shown below. The assembler mappings for these structures are in
ISTEEHNA.

/***/
[* */
/* EE/ HPR Network Managenent Interface Initialization Record */
[* */
/* This record is used to pass information about the VTAM EE/ HPR */
/* Managenent Server to the client application. This is the first */
/* record witten by the server to the client. */
* *
;***//
t ypedef struct {
unsi gned int EEHNM _Eye; /* Init record eyecatcher (NM1)
Cc/
char EEHNM _Level [8] ; /* VTAM Level from ATCVT */
unsi gned |l ong | ong EEHNM _Ti ne; /* TOD VTAM started */
char EEHNM _Conp| 8] ; /* Conponent nane */

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

struct { /* Functions supported */

unsi gned int EEHNM _I Pv6_Supp 1 1 /* 1 Pv6 addrs supported */
unsi gned int EEHNM Local Hostnane :1; /* Lcl Hostnm supported */
unsi gned int EEHNM _Rsvdl . 6; /* Unused - avail abl e */
} EEHNM _Support ed;
char EEHNM _Rsvd2[15]; /* Reserved */
} EEHNM ni t;

Term nati on Record

The structure of the termination record is below.

Enterprise Extender termination record format:

Common Request/Response Header

Input Triplet information (no corresponding input request) -- a single triplet is defined
* Offset from start of response data to first input section
* Length of each input section of this type - 0
* Number of input sections of this type - 0

Output Quadruplet information -- a single quadruplet is defined
¢ Offset from start of response data to first output record
e 0
e 0
* Number of output records included in this response - 0

EE Summary Response Record
The structure of the EE Summary response is below.

Enterprise Extender Summary Response format:
Common Request/Response Header
Input Triplet information (copied from request) -- a single triplet is defined
* Offset from start of response data to first input section
¢ Length of each input section of this type
* Number of input sections of this type
Output Quadruplet information -- a single quadruplet is defined
¢ Offset from start of response data to first output record
* 0 (since the records that follow are variable length records)
¢ Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request, then some data was not
reported due to storage constraints)
* Number of output records matching the filters supplied on the corresponding request
Start of input information (copied from request, offset from start of response data saved in Input
Triplet)
Start of output information (offset from start of response data saved in Output Quadruplet), specifically
a collection of:
* Enterprise Extender Summary Global Output Record (one instance)
¢ Enterprise Extender Summary I[P Address Output Record(s) (one instance per IP address being
reported)

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 73

Enterprise Extender Summary Global Output Record:

Record Identifier (4 chars) --- "EESG"

Length of overall record (4 bytes)

Reserved field (2 chars)

Number of triplets for this output record (2 bytes) -- 1

Output Record Triplet information
¢ Offset from start of the record to first section of this type within the output record (4 bytes)
* Length of every section of this type within the output record (2 bytes)
* Number of output sections of this type within the output record (2 bytes)

Start of Enterprise Extender Summary static information section (one instance)

Enterprise Extender Summary IP Address Output Record:

Record Identifier (4 chars) --- "EESI"

Length of overall record (4 bytes)

Reserved field (2 chars)

Number of triplets for this output record (2 bytes) -- 2

Output Record Triplet information
® Offset from start of the record to first section of this type within the output record (4 bytes)
® Length of every section of this type within the output record (2 bytes)
® Number of output sections of this type within the output record (2 bytes)

Start of Enterprise Extender Summary IP address information section (one instance)

Start of Enterprise Extender Summary Hostname information section (one per hostname used to obtain this IP
address, zero if no hostname resolution was performed)

The C/C++ data structure definitions for the EE Summary Response Record are contained in the
ISTEESUC header file, and are shown below. The assembler mappings for these structures are in
ISTEEHUA.

/**/
/* Enterprise Extender Summary d obal record */

/**/

typedef struct {

unsi gned i nt EESunG Eye; /* EE Summary d obal 1D (EESG
@auc/
unsi gned i nt EESunG Len; /* Overall length of this record */
char EESUMG Rsv[2]; /* Reserved */
unsi gned short EESunG Numfriplets; /* Nunber of triplets defined
for this record */

EEHNMRecor dTri pl et EESunG Triplet; /* Only one triplet

defined for this record */

} EESunid obal ; /* Enterprise Extender Summary
G obal record */
/**/
/* Enterprise Extender Summary d obal record */

/**/

typedef struct {

struct {
unsi gned char EESunmE Low TGS; /* Low priority */
unsi gned char EESumGED Medi um TCS; /* Mediumpriority */
unsi gned char EESunGD Hi gh_TOS; /* High priority */
unsi gned char EESunGD Network _TOS; /* Network priority */
unsi gned char EESumED _Signal _TCS; /* Signal priority */
} EESuntaD TGS I nf o; [* TOS Information (1Pv4) or

traffic class data (IPv6) */

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

74

char EESunt® Rsvd; /* Reserved */

struct {
unsi gned short EESunGD Port Num Low; /* Low priority data */
unsi gned short EESunD Port Num Mediuny /* Medium priority data*/
unsi gned short EESunGD Port _Num Hi gh; /* High priority data */
unsi gned short EESunGD Port Num Network; /* Network priority */

unsi gned short EESunGD Port Num Signal; /* LDLC signals */
} EESuntD Port Nunbers; /* Port Nunbers */
struct {

unsi gned int EESumGD Tiner LIVTIME, /* LIVTIME */
unsi gned int EESumGD_Ti ner _SRQTI ME; /* SRQTI MVE */
unsi gned char EESUmG@E _Ti mer SROQRETRY; /* SRQRETRY */
char EESunGD Tiner _Rsvd[3]; /* Reserved */
} EESuntzD Ti nmer _I nf o; /* EE Tinmer Information */

} EESuntd obal Dat a; /* Enterprise Extender Summary
G obal data section */

/**/

/* Enterprise Extender Summary | P Address Record */

/**/

typedef struct {

unsi gned int EESum _Eye; /* EE Sunmary | PAddress ID field

(EESI) @uck/
unsi gned i nt EESum _Len; /* Overall length of this record */
char EESum Rsv[2]; /* Reserved */
unsi gned short EESum _Numiriplets; /* Nunber of triplets defined

for this record */
EEHNMRecor dTri pl et EESum I PTriplet; /* First triplet points to

| P specific data */
EEHNMRecor dTri pl et EESum _HNTriplet; /* Second triplet

poi nts to hostnanme data */

} EESum PAddress; /* Enterprise Extender Summary
| P Address record format */

/**/

/* Enterprise Extender Summary | P Address Specific */

/**/

t ypedef struct {

uni on {
struct in6_addr EESum P_Local |Pv6_Address; /* Local |Pv6 address*/
struct {
char Rsvd[12] ; /* Pad */
struct in_addr Address; /* Local |Pv4 address */

EESum P_Local _| Pv4_Address;
} EESunml P_Local _Address;

char EESum P_Rsvdl[12]; /* Reserved for VTAM usage */
struct {
unsi gned int EESum P_I Pv6_Address : 1; /* Local |PAddress
is | Pv6
"1'B = | Pv6 Address
'0'B = | Pv4 Address */
unsi gned int EESum P_I Pv6_Rsvd : 7; /* Reserved */
} EESum P_FI ags; /[* Information Fl ags */
char EESum P_Rsvd2[3]; /* Reserved */
unsi gned int EESum P_Num SRORETRY_| NOPS; /* Count of the
nunber of lines that have
| NOPed due to SRQRETRY */

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

75

unsi gned int EESum P Num Active Total Conns; /* Total active
EE connections for this
| P address */
struct {
unsi gned short EESum P_Num Avail Lines_ PreDefined; /* Tota
nunber of available lines for
predefi ned connecti ons */
unsi gned short EESum P_Num Active_ PreDefined _Conns; /* Tota
nunmber of active predefined
connecti ons */
} EESum P_PreDefi ned_I nf o; /* Predefined Connection Info
specific to this I P address */

struct {
unsi gned short EESum P_Num Local VRNs; /* Total nunber of Loca
VRNs defined with this
| ocal | P address */
unsi gned short EESum P_Num Avail _Lines LVRN, /* Total nunber of
avail able l'ines for Local
VRN connecti ons */
unsi gned short EESum P_Num Active_ LVRN Conns; /* Total nunber of
active Local VRN connections */
} EESum P_Local VRN I nfo; /* Local VRN Info specific to this
| P address */
struct {
unsi gned short EESum P_Num d obal VRNs; /* Total number of d oba
VRNs defined with this |ocal
| P address */
unsi gned short EESum P_Num Avail Lines _GVRN, /* Total nunber of
avail able lines for d oba
VRN connecti ons */
unsi gned short EESum P_Num Active GVRN Conns; /* Total nunber of
active dobal VRN connections */

} EESum P_d obal _VRN_I nf o; /* dobal VRN Info for this
specific | P address */
} EESunm PAddr essDat a; /* Enterprise Extender Sumary

| P Address specific section */

/**/

/* Enterprise Extender Summary Hostname Section */
/************)\-*******************)\-***********************************/
typedef struct {
unsi gned char EESum H_Host Len; /* Actual |ength of hostnane */
char EESum H Host nane[64]; /* Host name used to resol ve
to the local |IP address
reported in this EE

Sunmary record */
} EESum _Host naneDat a; /* Enterprise Extender Sumary
Host nanme secti on mappi ng */

/**/

/* Eyecatcher constants for EE Summary records */
/**/

const unsigned int EESunG | D

= 0xC5C5E2C7; /* 'EESG EE sunmmary gl oba
record @ct/
const unsigned int EESum _ID
= 0xC5C5E2C9; /* "EESI' EE summary |P
address record @uc/

/**/

/* Constants for Triplet counts for the various records */

/**/

const int EESunG TripletCnt = 1; /* EE sunmmary gl obal record has

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

76

one triplet */
const int EESum _TripletCnt = 2; /* EE Sunmary | P address record
record has two triplets */

EE Connection Response Record

The structure of the response record is as follows:

Common Request/Response Header

Input Triplet information (copied from request) - a single triplet is defned
* Offset from start of response data to first input section
¢ Length of each input section of this type
* Number of input sections of this type

Output Quadruplet information - a single quadruplet is defined
* Offset from start of response data to first output record
* 0
¢ Total number of output records
* Number of output records included in this response (if this value is not equal to total, then
some data was not reported)

Start of input information (copied from request, offset from start of response data saved in Input
Triplet)

Start of output information (offset from start of response data saved in Output Quadruplet), specifically
a collection of:
* Enterprise Extender Connection Specific Output Record(s) (one instance per EE connection
reported)

Enterprise Extender Connection Specific Output Record:
Record Identifier (4 chars) --- "EECO"

Length of overall record (4 bytes)

Reserved field (2 chars)

Number of triplets for this output record (2 bytes) -- 4

Output Record Triplet information
* Offset from start of the record to first section of this type within the output record (4 bytes)
* Length of every section of this type within the output record (2 bytes)
* Number of output sections of this type within the output record (2 bytes)

Start of Enterprise Extender Connection static information section (one instance)

Start of Enterprise Extender Connection Hostname section(s) (zero-two possible instances, one for
local and one for remote hostname if applicable)

Start of Enterprise Extender Connection Associated VRN name section (one instance, only included if
the EE connection is across a virtual routing node)

Start of Enterprise Extender Connection Associated RTP PU name section(s) (one instance per RTP
PU that is using this EE connection)

The C/C++ data structure definitions for the EE Connection Response Record are contained in the
ISTEECOC header file, and are shown below. The assembler mappings for these structures are in
ISTEECOA.

2003/10/30 15:09:18 V1RS5 Network Mgmt User's Guide.lwp 77

/***/

/* Enterprise Extender Connection Data Bl ock

/***/

t ypedef struct {

*/

unsi gned i nt EEConn_Eye; /* EE Connection | D (EECO @uck/
unsi gned i nt EEConn_Len; /* Overall length of this record */
short EEConn_Rsvd; /* Reserved */
unsi gned short EEConn_Nuniriplets;/* Nunber of triplets defined

for this record */

EEHNMRecor dTri pl et EEConn_StTriplet; /* First triplet
defines the static section */
EEHNVRecor dTri pl et EEConn_HnTriplet; /* Second tripl et
defines the associ at ed
host nane section(s)

EEHNVRecor dTri pl et EEConn_VNTriplet; /* Third triplet
defines the VRN section
EEHNVRecor dTri pl et EEConn_PUTriplet; /* Fourth triplet
defines the list of

associ ated RTP PU nanes

} EEConnRecor d;

*/
*/

*/

/***/

/* Enterprise Extender Connection static infornmation section

/***/

typedef struct {
uni on {

struct in6_addr EEConnS Local | Pv6_Address; /* Local

*/

| Pv6 address*/

2003/10/30 15:09:18

unsi gned i nt EEConnS Dynam c_PU

struct {
char Rsvd[12] ; /* Pad */
struct in_addr Address; /* Local |Pv4 address */
} EEConnS Local | Pv4_Address;
} EEConnS_Local _Address;
char EEConnS Rsvdl[12]; /* Reserved */
uni on {
struct in6_addr EEConnS Renpte | Pv6 _Address; /* Renote |Pv6 addr */
struct {
char Rsvd[12] ; /* Pad */
struct in_addr Address; /* Renote | Pv4 address */
EEConnS_Renot e | Pv4_Address;
} EEConnS_Renot e_Address;
char EEConnS Rsvd[12] ; /* Reserved */
char EEConnS_Stack Nane[8]; /* Enterprise Extender
TCP/ I P stack name */
char EEConnS_Line_Nane[8]; /* Enterprise Extender
Li ne Name */
char EEConnS PU Name[8] ;/* Enterprise Extender PU Nane */
unsi gned char EEConnS Renote SAP;/* Renpte SAP */
unsi gned char EEConnS Local SAP; /* Local SAP */
struct {
unsi gned int EEConnS | Pv6_Address :1; /* Local and Renote

addresses are | Pv6:
1 - Both | Pv6 Address
0 - Both I Pv4 Address */

01 /* Dynam c PU indicator

1 - Dynanmic
0 - Predefined */

VIRS Network Mgmt User's Guide.lwp

78

unsi gned i nt EEConnS KEEPACT
unsi gned i nt EEConnS_DW NOP

01 [* KEEPACT bool ean flag */
0 1 /* DWNOP boolean flag */

unsi gned int EEConnS_Fl agsRsvd L 4; /* Reserved */
} EEConnS_Fl ags;
unsi gned char EEConnS REDI AL_Cnt;/* EE Redi al Count */

short
unsi gned short EEConnS Rsvd3;
unsi gned i nt

EEConnS REDIAL Dy;/* EE Redial Delay in seconds */

/* Paddi ng, avail able */

EEConnS_Total _LULU Count; /* Count of LU LU sessions

on RTP pipes using this
EE connecti on */

/**

Qut bound Data Transfer Information by Priority:

Low
Medi um
Hi gh
Net wor k
Si gha

**/

struct {

unsi gned long long EEConnS SNA Bytes Sent L; /* Total nunber of

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

2003/10/30 15:09:18

bytes sent over this EE
connection - LOWpriority.

This includes the data bytes
along with NLH, THDR and FI D5 */

EEConnS_NLPQut Info_L; /* Count of NLPs

sent outbound - LOWpriority */

EEConnS_NLPCQut _Rxnt _Info_L;/* Count of NLPs

retransm tted outbound -
LOWpriority */

EEConnS SNA Bytes Sent M /* Total nunber of

bytes sent over this EE
connection - MEDIUM priority.
This includes the data bytes
along with NLH, THDR and FI D5 */

EEConnS_NLPQut _I nfo_M /* Count of NLPs

sent out bound - MEDI UM
priority */

EEConnS_NLPCut _Rxnt _Info_M/* Count of NLPs

retransm tted outbound -
MEDI UM priority */

EEConnS SNA Bytes Sent H;, /* Total nunber of

bytes sent over this EE
connection - HIGH priority.

This includes the data bytes
along with NLH, THDR and FI D5 */

EEConnS NLPCQut Info_H; /* Count of NLPs

sent outbound - HIGH priority */

EEConnS NLPQut Rxm Info H;,/* Count of NLPs

retransmitted out bound -
HI GH priority *

EEConnS SNA Bytes Sent N, /* Total nunber of

bytes sent over this EE
connection - NETWORK priority.
This includes the data bytes
along with NLH, THDR and FI D5 */

EEConnS_NLPCQut _I nfo_N; /* Count of NLPs

sent out bound - NETWORK
priority */

EEConnS NLPQut Rxm Info_N;/* Count of NLPs

VIRS Network Mgmt User's Guide.lwp

79

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

retransnmitted out bound -

NETWORK priority

EEConnS SNA Bytes Sent S; [/* Total

*/

nunber of

bytes sent over this EE
connection - SIGNAL priority.
This includes the data bytes
along with NLH, THDR and FI D5 */
EEConnS_NLPCQut _I nfo_S; /* Count of NLPs

sent out bound -
priority

SI GNAL

*/

EEConnS NLPQut Rxm Info_S;/* Count of NLPs
retransmitted out bound -

SIGNAL priority

EEConnS SNA Bytes Sent A; [/* Total

*/

nunber of

bytes sent over this EE
connection - ALL priorities
This includes the data bytes
along with NLH, THDR and FI D5 */
EEConnS_NLPCQut _I nfo_A; /* Count of NLPs
sent outbound - ALL priorities*/
EEConnS NLPQut Rxmt Info_A;/* Count of NLPs
retransmtted outbound -

ALL priorities

} EEConnS_Dat a_Transf er _I nf o_Qut Bound;

*/

/**

I nbound Data Transfer Information by Priority:

Low
Medi um
Hi gh
Net wor k
Si gha

**/

struct {
unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

unsi gned | ong | ong

2003/10/30 15:09:18

EEConnS _SNA Bytes Rcv_L; /* Tot al

nunber

of bytes received over this

EE connection -

LOWVpriority.

This includes data bytes al ong
with NLH, THDR and FI D5 */
EEConnS NLPIn_Info L; /* Count of NLPs

recei ved i nbound -

priority

EEConnS_SNA Bytes Rcv_M /* Tota

LOW

*/

nunber

of bytes received over this

EE connection -

VEDI UM priority.

This includes data bytes along
with NLH, THDR and FI D5 */
EEConnS NLPIn_I nfo_M /* Count of NLPs

recei ved i nbound -

priority

EEConnS SNA Bytes Rcv_H; /* Tota

MEDI UM

*/

nunber

of bytes received over this

EE connection -

H GH priority.

This includes data bytes along
with NLH, THDR and FI D5 */
EEConnS NLPIn_Info_H; /* Count of NLPs

recei ved i nbound -

priority

EEConnS _SNA Bytes Rcv_N; /* Total

VIRS Network Mgmt User's Guide.lwp

H GH

*/

nunber

80

of bytes received over this
EE connection - NETWORK
priority. This includes data
bytes along with NLH, THDR and

Fl D5 */
unsi gned long long EEConnS NLPIn_Info_N; /* Count of NLPs

received i nbound - NETWORK

priority */

unsi gned long |l ong EEConnS SNA Bytes Rcv_S; /* Total number
of bytes received over this
EE connection - SIGNAL priority.
This includes data bytes along

with NLH, THDR and FI D5 */
unsi gned long long EEConnS NLPIn_Info_S; /* Count of NLPs

received i nbound - SI GNAL

priority */

unsi gned long Il ong EEConnS SNA Bytes Rcv_A; /* Total nunber
of bytes received over this
EE connection - ALL priorities.
This includes data bytes along

with NLH, THDR and FI D5 */
unsi gned long long EEConnS NLPIn_Info_ A /* Count of NLPs

recei ved i nbound - ALL

priorities */

} EEConnS Data_Transfer_Info_ I nBound;

unsi gned | ong | ong EEConnS_Connecti on_Act TOD; /* TOD the EE
connection was activated */

unsi gned short EEConnS Num SRQRETRY_GT _One; [/* Nunmber of tines
this connection has had signa
responses require nore than
one retry. */
unsi gned short EEConnS Num SRQRETRY_EQ Max; [/* Nunmber of tines
this connection has had signa
responses require the maxi mum
al l owabl e retries. */
} EEConn_Stati cDat a;

/***/

/* Enterprise Extender Connection Associ ated Host nane section */

/***/

typedef struct {

struct { /* Hostnane indicators */
unsi gned i nt EEConnH Usage :1; /* Local vs. Renpte hostnane
'"1'B - hostnanme was used to
obtain renote | P address
'"0'B - hostname was used to
obtain local IP address */
unsi gned int EEConnH Rsvd :7; [/* Unused */
} EEConnH_Fl ags;
unsi gned char EEConnH Lengt h; /* Actual |ength of the hostnane

bei ng reported. For convenience,
the section will always have
space for a maxi num si zed
host nane */
char EEConnH_Host [64] ; /* Host name bei ng reported */
} EEConn_Host naneDat a;

/***/

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

81

/* Enterprise Extender Connection Associated VRN section */
/***/

t ypedef struct {

struct { /* Header data */
struct { /* VRN data indicators */
unsi gned i nt EEConnV_Type :1; /* VRN type being reported:
"1'B - dobal VRN
"0'"B - Local VRN */
unsi gned i nt EEConnV_Rsvd :7; /* Unused */
} EEConnV_Fl ags;
} EEConnV_Header;
/* Following the header is the Virtual Routing Node Nanme. The */
/* length of the nane is obtained fromthe total |ength of the */
/* VRN section, as shown in the record triplet, less the length */
/* of the section header. */

} EEConn_VRNDat a;

/***/

/* Enterprise Extender Connection Associ ated RTP PU name section */

/***/

t ypedef struct
char EEConnP_Narme[8] ; /* RTP PU nane, right-padded with

bl anks. /

} EEConn_RTPPUDATA;

/***/

/* Eyecatcher constants for EE Connection records */

/***/

const unsigned int EEConn_ID /* EE connection record (EECO */
= 0xC5C5C3D6; [*@uLC/

/***/

/* Constants for Triplet counts for the EE Connection record */

/***/

const int EEConn_TripletCnt = 4; /* EE conn rcd has 4 triplets */

HPR Connection Response Record

HPR Connection Response format:

Common Request/Response Header

Input Triplet information (copied from request) -- a single triplet is defined
¢ Offset from start of response data to first input section
* Length of each input section of this type
* Number of input sections of this type

Output Quadruplet information -- a single quadruplet is defined
* Offset from start of response data to first output record
e 0
* Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request, then some data was not
reported due to storage constraints)
* Number of output records matching the filters supplied on the corresponding request

Start of input information (copied from request, offset from start of response data saved in Input

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

Triplet)

Start of output information (offset from start of response data saved in Output Quadruplet),
specifically a collection of:

* HPR Connection Global Output Record (one instance)

* HPR Connection Specific Output Record(s) (one instance per HPR connection reported)

HPR Connection Global Output Record:

Record Identifier (4 chars) -- "HPRG"

Length of overall record (4 bytes)

Reserved field (2 chars)

Number of triplets for this output record (2 bytes) -- 1

Output Record Triplet information
* Offset from start of the response data to first section of this type within the output record (4
bytes)
* Length of every section of this type within the output record (2 bytes)
* Number of output sections of this type within the output record (2 bytes)

Start of HPR Connection Global data

HPR Connection Specific Output Record:

Record Identifier (4 chars) --- "HPRC"

Length of overall record (4 bytes)

Reserved field (2 chars)

Number of triplets for this output record (2 bytes) -- 3

Output Record Triplet information
* Offset from start of the record to first section of this type within the output record (4 bytes)
¢ Length of every section of this type within the output record (2 bytes)
* Number of output sections of this type within the output record (2 bytes)

Start of HPR Connection static information section (one instance)

Start of HPR Connection Route Selection Control Vector section (one instance, potentially none if
connection is in the process of performing a pathswitch)

Start of HPR Connection Pathswitch information section (only present if pathswitch had ever
occurred on this connection, one instance if present)

The C/C++ data structure definitions for the HPR Connection Response Record are contained in the
ISTHPRCC header file, and are shown below. The assembler mappings for these structures are in
ISTHPRCA.

/***/

/* HPR Connection d obal record * [

/***/

typedef struct {

unsi gned int HPRConnG _Eye; [/* HPRConn EyeCatcher (HPRG @BC*/
unsi gned int HPRConnG Len; /* Overall length of this record */
char HPRConnG Rsv[2]; /* Reserved */
unsi gned short HPRConnG Numfriplets; /* Nunber of triplets
defined for this record */
EEHNMRecor dTri pl et HPRConnG Triplet; /* Only one triplet
defined for this record */

2003/10/30 15:09:18 V1RS5 Network Mgmt User's Guide.lwp

} HPRConnd obal ; /* HPR Connection d obal Data
record */

/***/

/* HPR Connection d obal Data section * [

/***/

typedef struct {

struct {
char HPRConnGD CPNet 1d[8]; /* NETID */
char HPRConnGD_CPNane[8] ; /* CPNAME */
} HPRConnGD_Endpoi nt _Nane; /* Node nane of this VTAM */
} HPRConnd obal Dat a; /* HPR Connection d obal Data

section */

/***/

/* HPR Connection Specific Data record */
/***/
typedef struct {
unsi gned int HPRConnD Eye; /* HPRConn EyeCatcher (HPRC) @BC*/
unsi gned i nt HPRConnD Len; /* Overall length of this record */
char HPRConnD Rsv[2]; /* Reserved */
unsi gned short HPRConnD _Numfriplets; /* Nunber of triplets

EEHNMRecor dTri pl et HPRConnD _
EEHNMRecor dTri pl et HPRConnD_
EEHNMRecor dTri pl et HPRConnD _

defined for this record
StTriplet; /* First triplet

*/

points to static data section */

CVTriplet; /* Second triplet
points to RSCV data section
PSTriplet; /* Third triplet

*/

points to pathswitch data (only

present if at |east one switch

has occurred) */
} HPRConnDat a; /* HPR Connection Specific Data
record */

/***/

/* HPR Connection Specific Data Section */

/***/

typedef struct {

char HPRConnDS Nane[8]; /* RTP PU Nane */
struct {
char HPRConnDS_CPNet1d[8]; /* NETID - destination */
char HPRConnDS _CPNane[8]; /* CPNAME - destination */
} HPRConnDS_FQ Part ner _Nane; /* FullyQualified Partner CPNane */
char HPRConnDS Local _NCB_PUNane[8]; /* Physical NCB
PU Nane */
struct {
char HPRConnDS _First_Hop CPNetl1d[8]; /* NETID */
char HPRConnDS_Fi rst _Hop_ CPNare[8]; /* CPNAME */
} HPRConnDS _First_ Hop; /* First Hop CPNanme */
struct {
struct {
unsi gned int HPRConnDS Routing Mdde : 3; /* Routing Mde */
unsi gned int HPRConnDS Rsvl : 2; /* Reserved */
unsigned int HPRConnDS_TPF : 2; /* Transmission Priority */
unsigned int HPRConnDS Rsv2 : 9; /* Reserved */
} HPRConnDS_NET_ HEAD BIT,; /* Net header overlay */
} HPRConnDS_NET_ Header; /* NLH header */

struct {
unsi gned int HPRConnDS _ARB Al gorithm: 2; /* ARB Al gorithm
'00'B - Oiginal

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

84

'01' B - Responsive Mde */
unsi gned i nt HPRConnDS_ARB Mbde : 2; /* ARB Paci ng Mde

'00'B - Green npde

'01'B - Yell ow node

'10' B - Red npde */
unsi gned i nt HPRConnDS Role : 2; /* Passive or Active

'10'B - Active

'01'B - Passive */

unsi gned i nt HPRConnDS_WMNPS : 1; /* RTP connection is being

used by an MNPS appli cation */
unsi gned int HPRConnDS DYNLU : 1; /* DYNLU support indicator */
unsi gned int HPRConnDS _XNETALS : 1; /* XNETALS support

i ndi cat or */

unsi gned i nt HPRConnDS Rsv3 : 7; /* Reserved */

} HPRConnDS_Fl ags; /* Informational flags */
unsi gned char HPRConnDS_State; /* RTP State */
char HPRConnDS_COS Original[8]; /* Original COS @RC+/
char HPRConnDS Rsv5[3]; /* Reserved @R A/

struct {
unsi gned | ong | ong HPRConnDS Dat a_Bytes_Sent; /* Nunmber of
data bytes sent over this
RTP connecti on. */

unsi gned | ong | ong HPRConnDS _Total Bytes_Sent; /* Total nunber
of bytes sent over this RTP
connection. This includes data
bytes along with NLH, THDR and

Fl D5 */
unsi gned | ong | ong HPRConnDS_NLPCut ; /* Count of NLPs sent
out bound */

unsi gned short HPRConnDS Largest NLPCQut;/* Largest NLP sent */
unsi gned short HPRConnDS Num Rexnitted NLPS; /* Nunber of

retransmtted NLPs */
} HPRConnDS _Dat a_Transfer I nfo_QutBound; /* QutBound data transfer
i nformation * [

struct {
unsi gned | ong | ong HPRConnDS_Dat a_Bytes_Rcv; /* Number of data
bytes received over this RTP
connecti on. */

unsi gned | ong | ong HPRConnDS_Total Bytes_Rcv; [/* Total nunber
of bytes received over this RTP
connection. This includes data
bytes along with NLH, THDR and

Fl D5 */
unsi gned | ong | ong HPRConnDS_NLPI n; /* Count of NLPs received
i nbound */
unsi gned short HPRConnDS Largest NLPIN;, /* Largest NLP received*/
unsi gned short HPRConnDS Rsv4; /* Reserved */
} HPRConnDS Data_Transfer_Info _InBound; /* InBound data transfer
i nformation */
struct {
unsi gned i nt HPRConnDS I nitial _Send_Rate; /* Initial send
Rat e */
unsi gned int HPRConnDS_Al | owed_Send_Rate; /* Al owed Send
Rat e */

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

85

/**/

/* The next five threshholds are valid only if */
/* HPRConnDS_ARB Al gorithmindi cates "ARB Responsive node" is */
/* being used */

/**/

unsi gned i nt HPRConnDS_Maxi mum Send_Rate; /* H ghwater mark for
HPRConnDS Act ual _Send_ Rat e@pLM/
unsi gned int HPRConnDS Actual _Send Rate; /* Actual Send Rate

@/
i nt HPRConnDS_ARB2_RCVR_THRESHOLD; /* Current
receiver threshold
(value in mcrosecs) */
i nt HPRConnDS ARB2_ RCVR THRESHOLD M N; /* Mn
recei ver threshol d
(value in mcrosecs) */
i nt HPRConnDS_ARB2_ RCVR THRESHOLD MAX; /* Max receiver
recei ver threshold
(value in mcrosecs) */
} HPRConnDS_ARB | nf o; /* ARB I nformation */
struct {

unsi gned i nt HPRConnDS_Num NLPs_On_Pendi ng_Sends_Q /* Nunber
of NLPs on RPNCB_PENDI NG SENDS Q */
unsi gned int HPRConnDS_Num NLPs_On_O0SQ /* Nunber of NLPs on
the RPN _Qut Of Seq_Msg_Q */
unsi gned i nt HPRConnDS_Num NLPs_On_In_Segnments_Q /* Nunber
of NLPS on contained within the
RPN_RCV_Segnents_DaPt r */
struct {
unsigned int HPRConnDS NLPs_On_Wait_For_Ack_@Q /* Nunber of
NLPs on RPNCB_WAI T_FOR_ACK Q */
unsi gned int HPRConnDS Max_Num NLPs On Wait For Ack @ /* High
water mark for the nunber of
NLPs on RPNCB WAI T_FOR ACK Q */
unsi gned | ong | ong HPRConnDS _Max_Num NLPs On Wait _TOD; /* TOD
cl ock of high water mark for
nunber of NLPs on

RPNCB_WAI T_FOR_ACK _Q */
} HPRConnDS Wait_ For Ack _Q I nfo;
} HPRConnDS_Queue_|I nf o;
struct {
i nt HPRConnDS_Snoot h_Devi ati on; /* Responsive node
ARB snoot hi ng devi ati on. */
unsi gned i nt HPRConnDS_SRTT; /* Snoothed roundtrip time in ms*/
unsi gned int HPRConnDS Li veness _Tine; /* Liveness tine length
in seconds */
} HPRConnDS_Ti mer _I nf o;
unsi gned int HPRConnDS LULU Session_Count; /* Active LU LU
sessions using this RTP
connection */
unsi gned | ong | ong HPRConnDS_Activation_TOD; /* TOD HPR Pi pe
activated */
unsi gned | ong | ong HPRConnDS Local TCl D /* Local TCID */
unsi gned | ong | ong HPRConnDS_Renot e_TCl D; /* Renote TCID */
unsi gned char HPRConnDS Local NCE Len; /* Local NCE |ength */
char HPRConnDS Local _NCE[8] ; /* Local NCE */
unsi gned char HPRConnDS_NCE_I D LEN; /* Renote NCEID | ength */
char HPRConnDS NCE I D) 8]; /* Renpte NCEID */

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

86

unsi gned char HPRConnDS Local ANR LEN, /* Local ANR |l ength */

char HPRConnDS Local _ANR[8]; /* Local ANR | abel
out bound */
} HPRConnSpeci fi cDat a; /* HPR Connection Specific Data
section */

/**/

/* Mapping for the HPR Connection Pathswi tch Data. This section */
/* will only be supplied if a pathswitch had occurred in the life */
/* of the HPR connection being reported. */

/**/

t ypedef struct
unsi gned | ong | ong HPRConnDP_TOD Last _Pathswitch; /* TOD when
| ast path switch was initiated*/
struct {
unsi gned i nt HPRConnDP_In_PS : 1; /* RTP pipe in currently in
t he process of pathsw tching
'"1'B - Pipe is pathswi tching
'"0"B - Pipe is not switching */
unsi gned i nt HPRConnDP_Last PS Reason : 3; /* Last Path
Swi t ch Reason

'001'B - TG NOP
'010'B - SRT retries
'011'B - No NCB
'100' B - Modify RTP conmand
"101'B - Auto Pathswitch
'110'B - Partner Initiated
| ast switch @ict/
unsi gned int HPRConnDP_Rsv : 4; /* Reserved */
} HPRConnDP_PS Fl ags; /[* Path Switch Fl ags */
char HPRConnPat hSwi t chDat a_Rsvd,; /* Reserved */

unsi gned short HPRConnDP_Cnt _PS Initiated Rem /* Nunber of Path
switches initiated by the
renote RTP partner */
unsi gned short HPRConnDP_Cnt _PS Initiated Loc; /* Total nunber
of path switches initiated by
t hi s node */
unsi gned short HPRConnDP_Cnt _PS Due_To_Failure; /* Nunber of
Path switches initiated by this
node due to errors (i.e.,
TA NOP, short response tine
retries, or no NCB) */
unsi gned short HPRConnDP_Cnt _PS Due_To_ PSRETRY; /* Nunber of
Path switches initiated by this

node due to PSRETRY. */
} HPRConnPat hSwi t chDat a; /* HPR Connection Pathsw tch data
section */

/**/

/* Eyecatcher constants for HPR Connection records */
/**/

const unsi gned i nt HPRConnG | D

= 0xC8D7DAC7; /* HPR connection gl obal
record ' HPRG @xyc/
const unsi gned i nt HPRConnD_I D
= 0xC8D7DAC3; /* HPR connection gl obal
record ' HPRC @xBc/
/**/
/* Constants for Triplet counts for the various records */

/**/

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

87

const int HPRConnG Tri pl et Cnt

1; /* HPR connection gl obal

record has one triplet */
const int HPRConnD TripletCnt = 3; /* HPR conn specific
record has three triplets */

/**/

/* Constants for ARB Al gorithm */

/**/

const int HPRConnDS ARB Original = 0; /* ARB original node */
const int HPRConnDS ARB Responsive = 1; /* ARB responsive node */
/**/
/* Constants for ARB Mde */
/**/
const int HPRConnDS ARB G eenMbde = 0; /* G een */
const int HPRConnDS ARB Yel | owibde = 1; /* Yell ow */
const int HPRConnDS ARB RedMbde = 2; /* Red */

/**/

/* Constants for Endpoint Role */
/**/
const int HPRConnDS Role Active = 2; /* Active, or the node that
setup the pipe */
const int HPRConnDS Rol e Passive = 1; /* Passive, or the partner
endpoint that was told to set
up the pipe */

/**/

/* Constants for Pathsw tch reason codes */
/**/
const int HPRConnDP_PS TANOP = 1; /* TG INOP condition was detected*/
const int HPRConnDP_PS SRTRetry = 2; /* Short request tinmer

expiration */
const int HPRConnDP_PS NoNCB = 3; /* No NCB was avail able to use */
const int HPRConnDP_PS Modify = 4; /* Operator issued pathswitch

request */
const int HPRConnDP_PS AutoSwtch = 5; /* Pathswitch driven due to

automatic retry tiner */
const int HPRConnDP_PS Partner = 6; /* Partner initiated |ast

switch @LA*/

CSM Statistics Response Record
The structure of the CSM Statistics response is as follows:

CSM Statistics Response format:

Common Request/Response Header

Input Triplet information (copied from request) -- a single triplet is defined
* Offset from start of response data to first input section
¢ Length of each input section of this type
* Number of input sections of this type

Output Quadruplet information -- a single quadruplet is defined
¢ Offset from start of response data to first output record
e 0
¢ Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request, then some data was not
reported due to storage constraints)

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

* Number of output records matching the filters supplied on the corresponding request

Start of input information (copied from request, offset from start of response data saved in Input Triplet)

Start of output information (offset from start of response data saved in Output Quadruplet), specifically a
collection of:
¢ CSM Global Pool Output Record containing multiple CSM Buffer Pool data records (CSMPoolGData),
one per pool
® CSM Global Summary Output Record containing a single CSM Summary Data record
(CSMSummGData) representing CSM system wide summary info

CSM Global Output Pool Record:

Record Identifier (4 chars) -- "CSMP"

Length of overall record (4 bytes)

Reserved field (2 chars)

Number of triplets for this output record (2 bytes) -- 1

Output Record Triplet information
® Offset from start of the response data to first section of this type within the output record (4 bytes)
® Length of every section of this type within the output record (2 bytes)
® Number of output sections of this type within the output record (2 bytes)

Start of CSM Global Pool data (CSMPoolGDdata) records - one per CSM pool

CSM Global Output Summary Record:

Record Identifier (4 chars) -- "CSMS"

Length of overall record (4 bytes)

Reserved field (2 chars)

Number of triplets for this output record (2 bytes) - 1

Output Record Triplet information
® Offset from start of the response data to first section of this type within the output record (4 bytes)
¢ Length of every section of this type within the output record (2 bytes)
® Number of output sections of this type within the output record (2 bytes)

Start of CSM Global Summary data (CSMSummGData) record one single system wide record

The C/C++ data structure definitions for the CSM Statistics Response Record are contained in the
ISTCSMGC header file, and are shown below. The assembler mappings for these structures are in
ISTCSMGA.

/***/

/*

CSM Pool d obal record * [

/***/

t ypedef struct {

}

unsi gned i nt CSMPool G Eye; /* CSM Pool dobal ID (CSMP) @LC+/
unsi gned i nt CSMPool G Len; /* Overall length of this record */
unsi gned short CSMPool G Rsvd; /* Reserved */
unsi gned short CSMPool G Nuniriplets; [/* Nunber of triplets defined
for this record */

EEHNVRecor dTri pl et CSMPool G Triplet; /* Only one triplet
defined for this record * [
CSMPool d obal ;

/***/

2003/10/30 15:09:18 V1RS5 Network Mgmt User's Guide.lwp 89

/* CSM Pool d obal Data record (one per CSM pool) */

/***/

typedef struct {

i nt CSMPool GD _Si ze; /* Pool size */
unsi gned char CSMPool GD _Srce; /* Buffer source flag */
char CSMPool GD Rsvd[3]; /* Not used - available */
i nt CSMPool GD | nUse; /* Nunber of buffers in

pool that are in use */
i nt CSMPool GD _Fr ee; /* Number of buffers in

pool that are avail able */

} CSMPool GDat a;

/***/

/* CSM Sunmary d obal record */

/***/

typedef struct {

unsi gned int CSMSummG_Eye; /* CSM Sunmary d obal | D (CSM)
@uc/
unsi gned i nt CSMsumG_Len; /* Overall length of this record */
unsi gned short CSMSumG_Rsvd; /* Reserved */
unsi gned short CSMBumG Nunmilriplets; /* Nunber of triplets defined
for this record */

EEHNVRecor dTri pl et CSMSummG Triplet; /* Only one triplet
defined for this record */
} CSMsunmd obal ;

/***/

/* CSM Summary d obal Data record (one per systen) */

/***/

t ypedef struct {
unsi gned int CSMsummGD_MaxFi NMeg :1; /* \Wen off val ue

= bytes
When on val ue = negabytes*/
unsi gned i nt CSMsunmmGD_Rsvdl :7; |* Reserved */
unsi gned int CSMsunmGD _MaxFi xed :24; /* Installation Max
fixed storage */
unsi gned int CSMsummGD Cur Fi NMeg :1; /* \Wen off val ue byt es

When on val ue
unsi gned i nt CSMsum®GD_Rsvd2 :7; [|* Reserved
unsi gned int CSMsummGD Cur Fi xed :24; /* Current fixed storage

negabyt es*/
*/

in use */
unsi gned i nt CSMsunmGD_ MaxECSA; /* Installation max ECSA */
unsi gned i nt CSMsunmGD_Cur ECSA; /* Current ECSA Storage */

} CSMsumGDat a;

/***/

/* Eyecatcher constants for CSM Sunmary pool and sumrary records */
/***/

const unsigned int CSMPool ID

= OxC3E2DM4D7; /* CSM Pool dobal ID @ct/
const unsigned int CSMsumm | D
= OxC3E2D4EZ2; /* CSM Summary d obal |ID @i1C+/

/***/

/* Constants to describe CSMPool GD Srce (buffer source) */

/***/

const int CSMPool GD_SrceECSA = 0x80; /* Indicates source is
CSM ECSA */
const int CSMPool GD _SrceDS = 0x40; /* Indicates source is

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp

90

CSM DS */

/***/

/* Constants for Triplet counts for the various records */
/*************)\-***/

const

const

i nt CSMPool G Tri pl et Cnt
i nt CSMsum® Tri pl et Cnt

=1, [/* CSM Pool d obal record has
one triplet */
=1, [/* CSM Summary d obal record has
one triplet */

The following table describes the errors in an NMI Request for which VTAM will send a termination
record with the given Return Code and Reason Code, and then close the connection

Return Code | Reason Code | Meaning

EINVAL ‘00007110°X | Request header too short.

EINVAL ‘00007111°X | Unsupported version number in request header.

EINVAL ‘00007112°X | Invalid triplet format: first request section is not contiguous
to request header.

EINVAL ‘00007112°X | Invalid triplet format: length of filter element is not correct
for given version.

EINVAL ‘00007113’X | Length of request header plus length of request sections
does not equal total length of request.

EINVAL ‘00007114°X | Invalid eyecatcher in request header.

The following table describes the error in an NMI request for which VTAM will return a negative
response of the same type as the request. VTAM will leave the connection active after returning the
negative response for these errors.

Return Code | Reason Code | Meaning

EINVAL ‘00007115°X Unrecognized request type.

EINVAL ‘00007116°X Too many filter elements (request sections) included for
request type.

EINVAL ‘00007117°X Too few filter elements (request sections) included for
request type.

EINVAL ‘00007118°X | Undefined filter parameter indicator set in filter element.

EINVAL ‘00007119°X | Required filter parameter missing from filter element.

EINVAL ‘0000711A°X | Unsupported filter parameter indicator set in filter element.

The header files and macros are described in the following table.

Header files Macro for Contents

for C/C++ Assembler

programs programs

ISTEEHNC ISTEEHNA The NMI request and response header, initialization record, and
termination record structure definitions.

ISTEESUC ISTEESUA The EE summary response data structure definitions.

ISTEECOC ISTEECOA The EE connection response data structure definitions

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp 91

ISTHPRCC

ISTHPRCA

The HPR connection response data structure definitions.

ISTCSMGC

ISTCSMGA

The CSM global statistics response data structure definitions.

These header files and macros are shipped in SYSI.MACLIB. This data set must be available in
the concatenation when compiling or assembling a part that makes use of these

definitions.

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp

92

2003/10/30 15:09:18

Chapter 6 - Diagnosis

The interfaces described in this document are designed to return error information as either a
return_value, return_code or reason_code, where applicable. This information should be
used to further diagnosis the problem being reported.

When the return_value is -1, the return_code and reason code will indicate the problem that
was incurred by the interface. Refer to the chapter describing the interface being used for
return_value, return_code and reason_code descriptions.

If you are not able to diagnose the problem using the returned error information, gather the

following information documenting the error and contact IBM Customer Support.

Interface Documentation
Application interfaces for network e Set the SYSTCPIP “MISC” trace as
monitoring active.

* Collect a dump of the TCP/IP address
space and data space.

Application interface for formatting packet
and data trace records

Collect a dump of the TCP/IP address space
and data space.

Application interface for monitoring
TCP/UDP end points and TCP/IP storage
usage

Collect a dump of the TCP/IP address space
and data space.

Application interface for SNA network
monitoring data

Collect a dump of the VTAM address
space.

VIRS Network Mgmt User's Guide.lwp 93

Appendix A - Record Formats

FTP Server Transfer Initialization record

FTP Server Transfer Initialization self-defining section of SMF record:

Offset Name Length | Format Description
0 (x'0" Standard SMF 24 N/A Standard SMF header; subtype will be 100 (x'64’)
header
Self Defining Section

24 (x'18") | SMF119SD TRN |2 binary | Number of triplets in this record V1R4: 5, V1R5: 6

26 (x'"1A") 2 reserved

28 (x'"1C") | SMF119IDOFf 4 binary | Offset to TCP/IP identification section

32 (x'20") | SMF119IDLen 2 binary | Length of TCP/IP identification section

34 (x'22") | SMF119IDNum |2 binary | Number of TCP/IP identification sections

36 (x'24") | SMF119S10ff 4 binary | Offset to FTP server section

40 (x'28') | SMF119S1Len 2 binary | Length of FTP server section

42 (x'2A") | SMF119S1Num |2 binary | Number of FTP server sections

44 (x'2C") | SMF119S20ff 4 binary | Offset to FTP server hostname section

48 (x'30") | SMF119S2Len 2 binary | Length of FTP server hostname section

50 (x'32") | SMF119S2Num |2 binary | Number of FTP server hostname sections

52 (x'34') | SMF119S30ff 4 binary | Offset to FTP server first associated data set name
section

56 (x'38") | SMF119S3Len 2 binary | Length of FTP server first associated data set name
section

58 (x'3A") | SMF119S3Num |2 binary | Number of FTP server first associated data set name
sections

60 (x'3C") | SMF119S40ff 4 binary | Offset to FTP server second associated data set nam
section

64 (x'40") | SMF119S4Len 2 binary | Length of FTP server second associated data set name
section

66 (x'42") | SMF119S4Num |2 binary | Number of FTP server second associated data set
name
sections

68 (x'44") | SMF119S50ff 4 binary | Offset to FTP server Security section (V1R5 only)

72 (x'48") | SMF119S5Len 2 binary | Length of FTP server Security section (V1R5 only)

74 (x'4A") | SMF119S5Num |2 binary | Number of FTP server Security sections (V1R5 only)

The TCP/IP Identification section is the same as for the completion record:

Offset | Name Length Description

0 SMF119TI SYSName 8 System name from SYSNAME in IEASY Sxx

8 SMF119TI SysplexName |8 Sysplex name from SYSPLEX in COUPLExx

16 SMF119TI Stack 8 TCP/IP stack name

24 SMF119T1 ReleaselD 8 CS 0S/390 TCP/IP Release |dentifier

32 SMF119TI_Comp 8 TCP/IP subcomponent (right padded with blanks):

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp

94

FTPS: FTP server

40 SMF119TI_ASName 8 Started task qualifier or address space name of address
space that writes this SMF record

48 SMF119TI_UserIlD 8 User ID of security context under which this SMF record
is written

56 SMF119TI_ASID 4 ASID of address space that writes this SMF record

60 SMF119TI_Reason 4 Reason for writing this SMF record:
X’08’: Event SMF record

FTP Server Transfer Initialization record section (located physically after the TCP/IP identification

section in the record). This section is slightly different from the one in the transfer completion record and
the field names are therefore different from the completion record. The mapping of this record section is

in EZANMFTA (assembler macro) for assembler code and in EZANMEFTC (a C header) for C code.

Offset | Name Length | Description
0 SMF119FT_FSIOPer 1 FTP Operation according to SMF77 subtype
classification (this is really redundant information, the
same information can be found in
SMF119FT_FSICmd).
x'01": Append
x'02": Delete
x'03": Rename
x'04": Retrieve
x'05"; Store
x'06": Store Unique
1 SMF119FT_FSIActPas |1 Passive or active mode data connection:
x'00' active using default ip and port
x'01" active using PORT
x'02" active using EPRT
x'03' passive using PASV
x'04' passive using EPSV
2 2 Reserved
4 SMF119FT FSICmd 4 FTP command (according to RFC959+)
8 SMF119FT FSIFType 4 File type (SEQ, JES, or SQL)
12 SMF119FT FSIDRIP 16 Remote IP address (data connection)
28 SMF119FT FSIDLIP 16 Local IP address (data connection)
44 SMF119FT FSIDRPort | 2 Remote port number (data connection)
46 SMF119FT FSIDLPort | 2 Local port number (data connection - server)
48 SMF119FT FSICRIP 16 Remote IP address (control connection)
64 SMF119FT FSICLIP 16 Local IP address (control connection)
80 SMF119FT_FSICRPort | 2 Remote port number (control connection - client)
82 SMF119FT FSICLPort | 2 Local port number (control connection - server)
84 SMF119FT FSISUser 8 Client User ID on server
92 SMF119FT_FSIFType 1 Data type

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp

95

A: ASCII

E: EBCDIC

I: Image

B: Double-byte
U: UCS-2

93

SMF119FT_FSIMode

Transmission mode

B: Block
C: Compressed
S: Stream

94

SMF119FT_FSIStruct

Data structure

F: File
R: Record

95

SMF119FT_FSIDsType

Data set type

S: SEQ
P: PDS
H: HFS

96

SMF119FT_FSISTime

Data connection start time, formatted in 1/100 seconds
since midnight (using Coordinated Universal Time
(UTC))

100

SMF119FT_FSISDate

Data connection start date (format: OcyydddF). If the
start date is not available, the value specified will be
x'0000000F".

104

SMF119FT_FSICSTime

Control connection start time in 1/100 seconds since
midnight (using Coordinated Universal Time (UTC)).
(FTP session start time)

108

SMF119FT_FSICSDate

Control connection start date (format: 0cyydddF). If the
end date is not available, the value specified will be
x'0000000F'. (FTP sessions start date)

112

SMF119FT_FSIM1

PDS Member name

120

SMF119FT FSIM2

Second PDS member name (if rename operation)

The FTP Server Hostname section, physically located after the FTP Server Transfer Initialization section.
This section is optional and is identical to the one present in the transfer completion record, and will only
be present if a gethostbyaddr operation was performed for the Local IP address:

Offset

Name

Length Description

0

SMF119FT_Hostname

n Host Name

The FTP Server MVS Data Set Name section, physically located after the FTP Server Hostname section

(if present) or the FTP Server Transfer Initialization section. This section represents the MVS data set
names associated with the file transfer and is identical to the one present in the completion record. A

second instance of the section will be included for Rename File Transfer operations.

Offset

Name

Length

Description

0

SMF119FT MVSDataSet

44

MVS Data Set Name

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp

96

The FTP Server HFS Filename section, physically located after the FTP Server MVS Data Set Name

section. It is identical to the one present in the completion record. One or two names may be included in

this section:

Offset Name

Length Description

0 SMF119FT_HFSLen1 2

Length of first HFS File name

2 SMF119FT_HFSName1 |n

HFS File Name

2+n SMF119FT_HFSLen2 2

File name is being reported)

Length of second HFS File name (zero if only one HFS

4+n SMF119FT _HFSName2 [m

HFS File Name

The FTP Server Security Section is defined as follows and is identical to the one present in the

completion record:

Offset

Name

Length

Format

Description

0 (x0)

SMF119FT_FSMechanism

EBCDIC

Protection Mechanism
'N' None

T TLS
'G' GSSAPI

1(x1)

SMF119FT_FSCProtect

EBCDIC

Control Connection Protection Level

'N' None (no security mechanism is
active)

'C' Clear - the connection is not required to
be integrity protected or encrypted

'S' Safe - the connection is required to be
integrity ~ protected (GSSAPI only)

'P" Private - for GSSAPI, the connection is
required to be integrity protected and encrypted,;
for TLS, the connection is required to be
protected

2 (x2)

SMF119FT_FSDProtect

EBCDIC

Data Connection Protection Level

'N' None (no security mechanism is active)
'C' Clear - the connection is not required to be
integrity protected or encrypted

'S' Safe - the connection is required to be
integrity protected (GSSAPI only)

'P" Private - for GSSAPI, the connection is
required to be integrity protected and encrypted;
for TLS, the connection is required to be
protected

3 (x3)

SMF119FT_FSLoginMech

EBCDIC

Login Method

P! Password
'C' Certificate

4 (x'4")

SMF119FT_FSProtoLevel

EBCDIC

Protocol level (only present if Protocol
Mechanism is TLS).

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp 97

Possible values are: SSLV2, SSLV3, and
TLSV1.
12 SMF119FT_FSCipherSpec |20 EBCDIC| Cipher Specification (only present if
(x'C" Protocol Mechanism is TLS).
Possible values when Protocol Level is
SSLV2: "RC4 US", "RC4 Export", "RC2
US", "RC2 Export", "DES 56-Bit", and
"Triple DES US"
Possible values when Protocol Level is
SSLV3 or TLSV1:
"SSL_NULL_MD5", "SSL_NULL_SHA",
"SSL_RC4_MD5_EX",
"SSL_RC4_MD5", "SSL_RC4_SHA",
"SSL_RC2_MD5_EX",
"SSL DES SHA"and "SSL 3DES SHA"
32 SMF119FT_FSProtoBufSize |4 binary Negotiated protection buffer size
(x'20"

FTP Client Transfer Initialization record

FTP Client Transfer Initialization self-defining section of SMF record:

Offset Name Length | Format Description

0 (x'0") Standard SMF header| 24 N/A Standard SMF header; subtype will be 101
(x'64")

Self Defining Section

24 (x'18") [SMF119SD_TRN 2 binary Number of triplets in this record V1R4: 4, V1RS5:
5

26 (x'"1A") 2 reserved

28 (x'1C") [SMF119IDOff 4 binary Offset to TCP/IP identification section

32 (x'20") | SMF119IDLen 2 binary Length of TCP/IP identification section

34 (x'22") | SMF119IDNum 2 binary Number of TCP/IP identification sections

36 (x'24") | SMF119S10ff 4 binary Offset to FTP client section

40 (x'28"') | SMF119S1Len 2 binary Length of FTP client section

42 (x'2A") | SMF119S1Num 2 binary Number of FTP client sections

44 (x'2C") | SMF119S20ff 4 binary Offset to FTP client associated data set name
section

48 (x'30') | SMF119S2Len 2 binary Length of FTP client associated data set name
section

50 (x'32") | SMF119S2Num 2 binary Number of FTP client associated data set name
sections

52 (x'34") | SMF119S30ff 4 binary Offset to FTP client SOCKS section

56 (x'38") | SMF119S3Len 2 binary Length of FTP client SOCKS section

58 (x'3A") | SMF119S3Num 2 binary Number of FTP client SOCKS sections

60 (x'3C") | SMF119S40ff 4 binary Offset to FTP server Security section (V1R5
only)

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp 98

64 (x'40") | SMF119S4Len binary Length of FTP server Security section (V1R5
only)

66 (x'42") | SMF119S4Num binary Number of FTP server Security sections (V1R5
only)

The TCP/IP Identification section is the same as for the completion record.

Offset Name Length Description

0 SMF119TI SYSName 8 System name from SYSNAME in IEASY Sxx

8 SMF119TI| SysplexName |8 Sysplex name from SYSPLEX in COUPLEXxx

16 SMF119TI Stack 8 TCP/IP stack name

24 SMF119TI| ReleaselD 8 CS 0S/390 TCP/IP Release Identifier

32 SMF119TI_Comp 8 TCP/IP subcomponent (right padded with blanks):
FTPC: FTP client

40 SMF119TI_ASName 8 Started task qualifier or address space name of
address space that writes this SMF record

48 SMF119TI_UserlID 8 User ID of security context under which this SMF
record is written

56 SMF119TI_ASID 4 ASID of address space that writes this SMF
record

60 SMF119TIl_Reason 4 Reason for writing this SMF record:
X’08’: Event SMF record

FTP Client Transfer Initialization record section (physically located after the TCP/IP Identification
section). This section is slightly different from the one in the transfer completion record and the field
names are therefore different from the completion record. The mapping of this record section is in
EZANMFTA (assembler macro) for assembler code and in EZANMEFTC (a C header) for C code.

Offset | Name Length | Description

0 SMF119FT FCICmd 4 FTP subcommand (according to RFC959)
4 SMF119FT FCIFType |4 Local file type (SEQ or SQL)

8 SMF119FT FCIDRIP 16 Remote IP address (data connection)

24 SMF119FT FCIDLIP 16 Local IP address (data connection)

40 SMF119FT FCIDRPort | 2 Remote port number (data connection)
42 SMF119FT FCIDLPort | 2 Local port number (data connection)

44 SMF119FT FCICRIP 16 Remote IP address (control connection)
60 SMF119FT FCICLIP 16 Local IP address (control connection)

76 SMF119FT FCICRPort | 2 Remote port number (control connection)
78 SMF119FT FCICLPort | 2 Local port number (control connection)
80 SMF119FT FCIRUser |8 User ID (login name) on server

88 SMF119FT FCILUser |8 Local User ID

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp 99

96

SMF119FT_FCIType

Data format

A: ASCII

E: EBCDIC

I: Image

B: Double-byte
U: UCS-2

97

SMF119FT_FCIMode

Transfer mode

B: Block
C: Compressed
S: Stream

98

SMF119FT_FClIStruct

Structure

F: File
R: Record

99

SMF119FT_FCIDSType

Data set type

S: SEQ
P: PDS
H: HFS

100

SMF119FT_FCISTime

Start time of data connection in 1/100 seconds since
midnight (using Coordinated Universal Time (UTC))

104

SMF119FT_FCISDate

Start date of data connection (format: 0cyydddF). If the
start date is not available, the value specified will be
x'0000000F".

108

SMF119FT_FCICSTime

Start time of control connection in 1/100 seconds since
midnight (using Coordinated Universal Time (UTC)).
FTP session start time.

112

SMF119FT_FCICSSDate

Start date of the control connection (format OcyydddF).
If the start date is not available, the value specified will
be x'0000000F'. FTP session start date.

116

SMF119FT_FCIM1

PDS member name

124

SMF119FT_FClActPas

—_

Passive or active mode data connection:

x'00" active using default ip and port
x'01" active using PORT

x'03' passive using PASV

x'04' passive using EPSV

125

reserved

The FTP Client Hostname section, physically located after the FTP Client Transfer Complete section.
This section is optional and is identical to the one present in the transfer completion record - it will only
be present if a gethostbyaddr operation was performed for the Local IP address:

Offset

Name

Length

Description

0

SMF119FTC Hostname

n

Host Name

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp

100

The FTP Client MVS Data Set Name section, physically located after the FTP Client Hostname section
(if present) or the FTP Client Transfer Complete section and is identical to the one present in the transfer
completion record. This section represents the MVS data set names associated with the file transfer:

Offset

Name

Length

Description

0

SMF119FTC_MVSDataSet

44

MVS Data Set Name

The FTP Client HFS Filename section, physically located after the FTP Client MVS Data Set Name
section and is identical to the one present in the transfer completion record. This section will only be
present if Data Set Type = HFS, and only one HFS filename will be present.

Offset

Name

Length

Description

0

SMF119FT HFSName1 |n

HFS File Name

The FTP client SOCKS section is only present if the connection passes through a SOCKS server and is
identical to the one present in the transfer completion record.

Offset Name Length Description

0 SMF119FT FCCIP |16 SOCKS server IP address
16 SMF119FT FCCPort |2 SOCKS Server port number
18 SMF119FT_FCCProt |1 SOCKS protocol version:

x'01' SOCKS Version 4
x'02' SOCKS Version 5

The FTP Client Security Section is defined as follows. It is identical to the one present in the transfer

completion record:

Offset Name Length | Format Description
0 (x'0") | SMF119FT_FCMechanism |1 EBCDIC | Protection Mechanism
'N' None
T TLS
'G' GSSAPI
1(x'1") | SMF119FT_FCCProtect 1 EBCDIC | Control Connection Protection

Level

'N' None (no security
mechanism is active)

'C' Clear - the connection is
not required to be integrity protected
or encrypted

'S’ Safe - the connection is
required to be integrity protected
(GSSAPI only)

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp 101

P’ Private - for GSSAPI, the
connection is required to be integrity

protected and encrypted; for TLS, the
connection is required to be protected

2 (x2)

SMF119FT_FCDProtect

EBCDIC

Data Connection Protection Level

'N' None (no security
mechanism is active)

'C' Clear - the connection is
not required to be integrity protected
or encrypted

'S’ Safe - the connection is
required to be integrity protected
(GSSAPI only)

P! Private - for GSSAPI, the
connection is required to be integrity
protected and encrypted; for TLS, the
connection is required to be protected

3 (x'3)

SMF119FT_FCLoginMech

EBCDIC

Login Method

‘v Undefined - the login
method is not defined for the
client.

P’ Password

'C' Certificate

4 (x'4")

SMF119FT_FCProtoLevel

EBCDIC

Protocol level (only present if
Protocol Mechanism is TLS).

Possible values are: SSLV2,
SSLV3, and TLSV1.

12
(xXC’)

SMF119FT_FCCipherSpec

20

EBCDIC

Cipher Specification (only present
if Protocol Mechanism is TLS).

Possible values when Protocol
Level is SSLV2: "RC4 US", "RC4
Export", "RC2 US", "RC2
Export", "DES 56-Bit", and
"Triple DES US"

Possible values when Protocol
Level is SSLV3 or TLSV1:
"SSL_NULL_MDS5",
"SSL_NULL_SHA",
"SSL_RC4_MDS5_EX",
"SSL_RC4_MD5",
"SSL_RC4_SHA",
"SSL_RC2_MD5_EX",
"SSL_DES_SHA" and
"SSL_3DES SHA"

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp 102

(x'20")

SMF119FT_FCProtBuffSize

binary

Negotiated protection buffer size

2003/10/30 15:09:18

V1RS5 Network Mgmt User's Guide.lwp 103

Appendix B - Pre-V1RS PTF information

This appendix contains information about PTF's required for enabling this function on z/OS V1R4.

Interface

IP
IP
IP
IP

IP

IP FTP SMF
SNA

SNA

APAR

PQ77244
PQ77837
PQ77838
PQ77840

PQ79566
PQ78753
0A04394
0A05225
1113699

Stack related API code

Netstat, Configuration, SNMP

FTP

API code that is not in the EZBTCPIP address space: EZBCTAPI,
Packet trace formatter, NM Service, IPCS

IP Headers/Macros

FTP SMF data

EE and CSM

SNA Headers/Macros

Informational APAR

2003/10/30 15:09:18

VIRS Network Mgmt User's Guide.lwp

104

Appendix C - File storage locations

The following table shows parts that are needed in order to compile Network Management
Interface applications and their locations. Your compiler should be configured to have access to

these libraries.

Function Filename Type Library
Allow applications to capture data EZBYTMIA (1) MACRO hlq.SEZANMAC
packets EZBYTMIH (1) H
Allow applications to format CTRACE EZBCTAPI MACRO hlg.SEZANMAC
records EZBYPTO MACRO
EZBYPTHA MACRO
EZBCTHDR MACRO
EZBYCTHH H
EZBYPTHH H
Allow applications to obtain TCP EZBYTMIA (1) MACRO hlg.SEZANMAC
connection information EZBYTMIH (1) H hlq.SEZANMAC
EZASMF77 MACRO SYS1.MACLIB
EZASMF H hlq.SEZANMAC
Callable API to retrieve local TCP and EZBNMRHA MACRO hlq.SEZANMAC
UDP End Point Data EZBNMRHC H

Network Management - Callable API to

Same files as "Callable API to retrieve local TCP and

retrieve new TCP/IP storage statistics UDP End Point Data"
details
Enterprise Extender Network Management | ISTEEHNC H SYS1.MACLIB
ISTEESUC H
ISTEECOC H
ISTHPRCC H
ISTCSMGC H
ISTEEHNA MACRO
ISTEESUA MACRO
ISTEECOA MACRO
ISTHPRCA MACRO
ISTCSMGA MACRO
Network Management - Real Time EZBYTMIA (1) MACRO hlq.SEZANMAC
Interface for SMF event records EZBYTMIH (1) H
EZANMFTA MACRO
EZANMFTC H
Table Notes: (1) Part used for multiple functions.
2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 105

2003/10/30 15:09:18 VIRS Network Mgmt User's Guide.lwp 106

